9,200 research outputs found

    Efficient computation of high index Sturm-Liouville eigenvalues for problems in physics

    Full text link
    Finding the eigenvalues of a Sturm-Liouville problem can be a computationally challenging task, especially when a large set of eigenvalues is computed, or just when particularly large eigenvalues are sought. This is a consequence of the highly oscillatory behaviour of the solutions corresponding to high eigenvalues, which forces a naive integrator to take increasingly smaller steps. We will discuss some techniques that yield uniform approximation over the whole eigenvalue spectrum and can take large steps even for high eigenvalues. In particular, we will focus on methods based on coefficient approximation which replace the coefficient functions of the Sturm-Liouville problem by simpler approximations and then solve the approximating problem. The use of (modified) Magnus or Neumann integrators allows to extend the coefficient approximation idea to higher order methods

    Applying numerical continuation to the parameter dependence of solutions of the Schr\"odinger equation

    Full text link
    In molecular reactions at the microscopic level the appearance of resonances has an important influence on the reactivity. It is important to predict when a bound state transitions into a resonance and how these transitions depend on various system parameters such as internuclear distances. The dynamics of such systems are described by the time-independent Schr\"odinger equation and the resonances are modeled by poles of the S-matrix. Using numerical continuation methods and bifurcation theory, techniques which find their roots in the study of dynamical systems, we are able to develop efficient and robust methods to study the transitions of bound states into resonances. By applying Keller's Pseudo-Arclength continuation, we can minimize the numerical complexity of our algorithm. As continuation methods generally assume smooth and well-behaving functions and the S-matrix is neither, special care has been taken to ensure accurate results. We have successfully applied our approach in a number of model problems involving the radial Schr\"odinger equation

    Steady and Stable: Numerical Investigations of Nonlinear Partial Differential Equations

    Full text link
    Excerpt: Mathematics is a language which can describe patterns in everyday life as well as abstract concepts existing only in our minds. Patterns exist in data, functions, and sets constructed around a common theme, but the most tangible patterns are visual. Visual demonstrations can help undergraduate students connect to abstract concepts in advanced mathematical courses. The study of partial differential equations, in particular, benefits from numerical analysis and simulation

    Hardness Results for Structured Linear Systems

    Full text link
    We show that if the nearly-linear time solvers for Laplacian matrices and their generalizations can be extended to solve just slightly larger families of linear systems, then they can be used to quickly solve all systems of linear equations over the reals. This result can be viewed either positively or negatively: either we will develop nearly-linear time algorithms for solving all systems of linear equations over the reals, or progress on the families we can solve in nearly-linear time will soon halt

    Phase diagram of the chromatic polynomial on a torus

    Get PDF
    We study the zero-temperature partition function of the Potts antiferromagnet (i.e., the chromatic polynomial) on a torus using a transfer-matrix approach. We consider square- and triangular-lattice strips with fixed width L, arbitrary length N, and fully periodic boundary conditions. On the mathematical side, we obtain exact expressions for the chromatic polynomial of widths L=5,6,7 for the square and triangular lattices. On the physical side, we obtain the exact ``phase diagrams'' for these strips of width L and infinite length, and from these results we extract useful information about the infinite-volume phase diagram of this model: in particular, the number and position of the different phases.Comment: 72 pages (LaTeX2e). Includes tex file, three sty files, and 26 Postscript figures. Also included are Mathematica files transfer6_sq.m and transfer6_tri.m. Final version to appear in Nucl. Phys.
    • …
    corecore