48,969 research outputs found

    Local convergence of a parameter based iteration with Holder continuous derivative in Banach spaces

    Full text link
    [EN] The local convergence analysis of a parameter based iteration with Hölder continuous first derivative is studied for finding solutions of nonlinear equations in Banach spaces. It generalizes the local convergence analysis under Lipschitz continuous first derivative. The main contribution is to show the applicability to those problems for which Lipschitz condition fails without using higher order derivatives. An existence-uniqueness theorem along with the derivation of error bounds for the solution is established. Different numerical examples including nonlinear Hammerstein equation are solved. The radii of balls of convergence for them are obtained. Substantial improvements of these radii are found in comparison to some other existing methods under similar conditions for all examples considered.The authors thank the referees for their valuable comments which have improved the presentation of the paper. The authors thankfully acknowledge the financial assistance provided by Council of Scientific and Industrial Research (CSIR), New Delhi, India.Singh, S.; Gupta, DK.; Badoni, RP.; Martínez Molada, E.; Hueso Pagoaga, JL. (2017). Local convergence of a parameter based iteration with Holder continuous derivative in Banach spaces. CALCOLO. 54(2):527-539. doi:10.1007/s10092-016-0197-9S527539542Argyros, I.K., Hilout, S.: Numerical methods in nonlinear analysis. World Scientific Publ. Comp, New Jersey (2013)Argyros, I.K., Hilout, S., Tabatabai, M.A.: Mathematical modelling with applications in biosciences and engineering. Nova Publishers, New York (2011)Singh, S., Gupta, D.K., Martínez, E., Hueso, J.L.: Semilocal and local convergence of a fifth order iteration with Fréchet derivative satisfying Hölder condition. Appl. Math. Comput. 276, 266–277 (2016)Traub, J.F.: Iterative methods for the solution of equations. Prentice-Hall, Englewood Cliffs (1964)Rall, L.B.: Computational solution of nonlinear operator equations, reprint edn. R. E. Krieger, New York (2007)Cordero, A., Ezquerro, J.A., Hernández-Verón, M.A., Torregrosa, J.R.: On the local convergence of a fifth-order iterative method in Banach spaces. Appl. Math. Comput. 251, 396–403 (2015)Argyros, I.K., Hilout, A.S.: On the local convergence of fast two-step Newton-like methods for solving nonlinear equations. J. Comput. Appl. Math. 245, 1–9 (2013)Argyros, I.K., Behl, R., Motsa, S.S.: Local convergence of an efficient high convergence order method using hypothesis only on the first derivative. Algorithms 8, 1076–1087 (2015)Kantorovich, L.V., Akilov, G.P.: Functional analysis. Pergamon Press, Oxford (1982)Argyros, I.K., Magreñán, A.A.: A study on the local convergence and dynamics of Chebyshev-Halley-type methods free from second derivative. Numer. Algorithms 71, 1–23 (2016)Li, D., Liu, P., Kou, J.: An improvement ofthe Chebyshev-Halley methods free from second derivative. Appl. Math. Comput. 235, 221–225 (2014)Argyros, I.K., George, S.: Local convergence of deformed Halley method in Banach space under Holder continuity conditions. J. Nonlinear Sci. Appl. 8, 246–254 (2015)Argyros, I.K., Khattri, S.K.: Local convergence for a family of third order methods in Banach spaces. J. Math. 46, 53–62 (2014)Argyros, I.K., George, S., Magreñán, A.A.: Local convergence for multi-point-parametric Chebyshev-Halley-type methods of higher convergence order. J. Comput. Appl. Math. 282, 215–224 (2015)Argyros, I.K., George, S.: Local convergence of modified Halley-like methods with less computation of inversion. Novi. Sad. J. Math. 45, 47–58 (2015)Xiao, X.Y., Yin, H.W.: Increasing the order of convergence for iterative methods to solve nonlinear systems. Calcolo (2015). doi: 10.1007/s10092-015-0149-9Martínez, E., Singh, S., Hueso, J.L., Gupta, D.K.: Enlarging the convergence domain in local convergence studies for iterative methods in Banach spaces. Appl. Math. Comput. 281, 252–265 (2016

    Semilocal convergence of a family of iterative methods in Banach spaces

    Full text link
    [EN] In this work, we prove a third and fourth convergence order result for a family of iterative methods for solving nonlinear systems in Banach spaces. We analyze the semilocal convergence by using recurrence relations, giving the existence and uniqueness theorem that establishes the R-order of the method and the priori error bounds. Finally, we apply the methods to two examples in order to illustrate the presented theory.This work has been supported by Ministerio de Ciencia e Innovaci´on MTM2011-28636-C02-02 and by Vicerrectorado de Investigaci´on. Universitat Polit`ecnica de Val`encia PAID-SP-2012-0498Hueso Pagoaga, JL.; Martínez Molada, E. (2014). Semilocal convergence of a family of iterative methods in Banach spaces. Numerical Algorithms. 67(2):365-384. https://doi.org/10.1007/s11075-013-9795-7S365384672Traub, J.F.: Iterative Methods for the Solution of Nonlinear Equations. Prentice Hall, New York (1964)Kantorovich, L.V.: On the newton method for functional equations. Doklady Akademii Nauk SSSR 59, 1237–1240 (1948)Candela, V., Marquina, A.: Recurrence relations for rational cubic methods, I: The Halley method. Computing 44, 169–184 (1990)Candela, V., Marquina, A.: Recurrence relations for rational cubic methods, II: The Chebyshev method. Computing 45, 355–367 (1990)Hernández, M.A.: Reduced recurrence relations for the Chebyshev method. J. Optim. Theory Appl. 98, 385–397 (1998)Gutiérrez, J.M., Hernández, M.A.: Recurrence relations for super-Halley method. J. Comput. Math. Appl. 7, 1–8 (1998)Ezquerro, J.A., Hernández, M.A.: Recurrence relations for Chebyshev-like methods. Appl. Math. Optim. 41, 227–236 (2000)Ezquerro, J.A., Hernández, M.A.: New iterations of R-order four with reduced computational cost. BIT Numer. Math. 49, 325–342 (2009)Argyros, I., K., Ezquerro, J.A., Gutiérrez, J.M., Hernández, M.A., Hilout, S.: On the semilocal convergence of efficient Chebyshev Secant-type methods. J. Comput. Appl. Math. 235–10, 3195–3206 (2011)Argyros, I.K., Hilout, S.: Weaker conditions for the convergence of Newtons method. J. Complex. 28(3), 364–387 (2012)Wang, X., Gu, C., Kou, J.: Semilocal convergence of a multipoint fourth-order super-Halley method in Banach spaces. Numer. Algoritm. 54, 497–516 (2011)Kou, J., Li, Y., Wang, X.: A variant of super Halley method with accelerated fourth-order convergence. Appl. Math. Comput. 186, 535–539 (2007)Zheng, L., Gu, C.: Recurrence relations for semilocal convergence of a fifth-order method in Banach spaces. Numer. Algoritm. 59, 623–638 (2012)Amat, S., Hernández, M.A., Romero, N.: A modified Chebyshevs iterative method with at least sixth order of convergence. Appl. Math. Comput. 206, 164–174 (2008)Wang, X., Kou, J., Gu, C.: Semilocal convergence of a sixth-order Jarratt method in Banach spaces. Numer. Algoritm. 57, 441–456 (2011)Hernández, M.A.: The newton method for operators with hlder continuous first derivative. J. Optim. Appl. 109, 631–648 (2001)Ye, X., Li, C.: Convergence of the family of the deformed Euler-Halley iterations under the Hlder condition of the second derivative. J. Comput. Appl. Math. 194, 294–308 (2006)Zhao, Y., Wu, Q.: Newton-Kantorovich theorem for a family of modified Halleys method under Hlder continuity conditions in Banach spaces. Appl. Math. Comput. 202, 243–251 (2008)Argyros, I.K.: Improved generalized differentiability conditions for Newton-like methods. J. Complex. 26, 316–333 (2010)Hueso, J.L., Martínez. E., Torregrosa, J.R.: Third and fourth order iterative methods free from second derivative for nonlinear systems. Appl. Math. Comput. 211, 190–197 (2009)Taylor, A.Y., Lay, D.: Introduction to Functional Analysis, 2nd edn.New York, Wiley (1980)Jarrat, P.: Some fourth order multipoint iterative methods for solving equations. Math. Comput. 20, 434–437 (1966)Cordero, A., Torregrosa, J.R.: Variants of Newtons method using fifth-order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007

    CMMSE2017: On two classes of fourth- and seventh-order vectorial methods with stable behavior

    Full text link
    [EN] A family of fourth-order iterative methods without memory, for solving nonlinear systems, and its seventh-order extension, are analyzed. By using complex dynamics tools, their stability and reliability are studied by means of the properties of the rational function obtained when they are applied on quadratic polynomials. The stability of their fixed points, in terms of the value of the parameter, its critical points and their associated parameter planes, etc. give us important information about which members of the family have good properties of stability and whether in any of them appear chaos in the iterative process. The conclusions obtained in this dynamical analysis are used in the numerical section, where an academical problem and also the chemical problem of predicting the diffusion and reaction in a porous catalyst pellet are solved.This research was partially supported by Ministerio de Economia y Competitividad MTM2014-52016-C02-2-P and Generalitat Valenciana PROMETEO/2016/089.Cordero Barbero, A.; Guasp, L.; Torregrosa Sánchez, JR. (2018). CMMSE2017: On two classes of fourth- and seventh-order vectorial methods with stable behavior. Journal of Mathematical Chemistry. 56(7):1902-1923. https://doi.org/10.1007/s10910-017-0814-0S19021923567S. Amat, S. Busquier, Advances in Iterative Methods for Nonlinear Equations (Springer, Berlin, 2016)S. Amat, S. Busquier, S. Plaza, Review of some iterative root-finding methods from a dynamical point of view. Sci. Ser. A Math. Sci. 10, 3–35 (2004)S. Amat, S. Busquier, S. Plaza, A construction of attracting periodic orbits for some classical third-order iterative methods. Comput. Appl. Math. 189, 22–33 (2006)I.K. Argyros, Á.A. Magreñn, On the convergence of an optimal fourth-order family of methods and its dynamics. Appl. Math. Comput. 252, 336–346 (2015)D.K.R. Babajee, A. Cordero, J.R. Torregrosa, Study of multipoint iterative methods through the Cayley quadratic test. Comput. Appl. Math. 291, 358–369 (2016). doi: 10.1016/J.CAM.2014.09.020P. Blanchard, The dynamics of Newton’s method. Proc. Symp. Appl. Math. 49, 139–154 (1994)F.I. Chicharro, A. Cordero, J.R. Torregrosa, Drawing dynamical and parameters planes of iterative families and methods. Sci. World J. 2013, Article ID 780153 (2013)C. Chun, M.Y. Lee, B. Neta, J. Džunić, On optimal fourth-order iterative methods free from second derivative and their dynamics. Appl. Math. Comput. 218, 6427–6438 (2012)A. Cordero, E. Gómez, J.R. Torregrosa, Efficient high-order iterative methods for solving nonlinear systems and their application on heat conduction problems. Complexity 2017, Article ID 6457532 (2017)A. Cordero, J.R. Torregrosa, Variants of Newton’s method using fifth-order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007)R.L. Devaney, An Introduction to Chaotic Dynamical Systems (Addison-Wesley Publishing Company, Reading, 1989)P.G. Logrado, J.D.M. Vianna, Partitioning technique procedure revisited: formalism and first application to atomic problems. Math. Chem. 22, 107–116 (1997)C.G. Jesudason, I. Numerical nonlinear analysis: differential methods and optimization applied to chemical reaction rate determination. Math. Chem. 49, 1384–1415 (2011)Á.A. Magreñán, Different anomalies in a Jarratt family of iterative root-finding methods. Appl. Math. Comput. 233, 29–38 (2014)M. Mahalakshmi, G. Hariharan, K. Kannan, The wavelet methods to linear and nonlinear reaction-diffusion model arising in mathematical chemistry. Math. Chem. 51(9), 2361–2385 (2013)K. Maleknejad, M. Alizadeh, An efficient numerical scheme for solving Hammerstein integral equation arisen in chemical phenomenon. Proc. Comput. Sci. 3, 361–364 (2011)B. Neta, C. Chun, M. Scott, Basins of attraction for optimal eighth-order methods to find simple roots of nonlinear equations. Appl. Math. Comput. 227, 567–592 (2014)M.S. Petković, B. Neta, L.D. Petković, J. Džunić, Multipoint Methods for Solving Nonlinear Equations (Elsevier, Amsterdam, 2013)R.C. Rach, J.S. Duan, A.M. Wazwaz, Solving coupled Lane–Emden boundary value problems in catalytic diffusion reactions by the Adomian decomposition method. Math. Chem. 52(1), 255–267 (2014)R. Singh, G. Nelakanti, J. Kumar, A new effcient technique for solving two-point boundary value problems for integro-differential equations. Math. Chem. 52, 2030–2051 (2014

    Semilocal Convergence Analysis of an Iteration of Order Five Using Recurrence Relations in Banach Spaces

    Full text link
    [EN] Semilocal convergence for an iteration of order five for solving nonlinear equations in Banach spaces is established under second-order Fr,chet derivative satisfying the Lipschitz condition. It is done by deriving a number of recurrence relations. A theorem for the existence-uniqueness along with the estimation of error bounds of the solution is established. Its R-order is shown to be equal to five. Both efficiency and computational efficiency indices are given. A variety of examples are worked out to show its applicability. In comparison to existing methods having similar R-orders, improved results in terms of computational efficiency index and error bounds are found using our methodology.The authors thank the referees for their valuable comments which have improved the presentation of the paper. The authors thankfully acknowledge the financial assistance provided by Council of Scientific and Industrial Research (CSIR), New Delhi, India.Singh, S.; Gupta, D.; Martínez Molada, E.; Hueso Pagoaga, JL. (2016). Semilocal Convergence Analysis of an Iteration of Order Five Using Recurrence Relations in Banach Spaces. Mediterranean Journal of Mathematics. 13(6):4219-4235. doi:10.1007/s00009-016-0741-5S42194235136Cordero A., Hueso J.L., Martinez E., Torregrosa J.R.: Increasing the convergence order of an iterative method for nonlinear systems. Appl. Math. Lett. 25, 2369–2374 (2012)Chen, L., Gu, C., Ma Y.: Semilocal convergence for a fifth order Newton’s method using Recurrence relations in Banach spaces. J. Appl. Math. 2011, 1–15 (2011)Wang X., Kou J., Gu C.: Semilocal convergence of a sixth order Jarrat method in Banach spaces. Numer. Algorithms 57, 441–456 (2011)Zheng L., Gu C.: Semilocal convergence of a sixth order method in Banach spaces. Numer. Algorithms 61, 413–427 (2012)Zheng L., Gu C.: Recurrence relations for semilocal convergence of a fifth order method in Banach spaces. Numer. Algorithms 59, 623–638 (2012)Proinov P.D., Ivanov S.I.: On the convergence of Halley’s method for multiple polynomial zeros. Mediterr. J. Math. 12, 555–572 (2015)Ezquerro, J.A., Hernández-Verón M.A.: On the domain of starting points of Newton’s method under center lipschitz conditions. Mediterr. J. Math. (2015). doi: 10.1007/s00009-015-0596-1Cordero A., Hernández-Verón M.A., Romero N., Torregrosa J.R.: Semilocal convergence by using recurrence relations for a fifth-order method in Banach spaces. J. Comput. Appl. Math. 273, 205–213 (2015)Parida P.K., Gupta D.K.: Recurrence relations for a Newton-like method in Banach spaces. J. Comput. Appl. Math. 206, 873–887 (2007)Hueso J.L., Martínez E.: Semilocal convergence of a family of iterative methods in Banach spaces. Numer. Algorithms 67, 365–384 (2014)Argyros, I.K., Hilout S.: Numerical methods in nonlinear analysis. World Scientific Publ. Comp., New Jersey (2013)Argyros, I.K., Hilout, S., Tabatabai, M.A.: Mathematical modelling with applications in biosciences and engineering. Nova Publishers, New York (2011)Argyros I.K., Khattri S.K.: Local convergence for a family of third order methods in Banach spaces. J. Math. 46, 53–62 (2004)Argyros I.K., Hilout A.S.: On the local convergence of fast two-step Newton-like methods for solving nonlinear equations. J. Comput. Appl. Math. 245, 1–9 (2013)Kantorovich, L.V., Akilov G.P.: Functional analysis. Pergamon Press, Oxford (1982)Argyros I.K., George S., Magreñán A.A.: Local convergence for multi-point-parametric Chebyshev-Halley-type methods of higher convergence order. J. Comput. Appl. Math. 282, 215–224 (2015)Argyros I.K., Magreñán A.A.: A study on the local convergence and the dynamics of Chebyshev-Halley-type methods free from second derivative. Numer. Algorithms 71, 1–23 (2015)Amat S., Hernández M.A., Romero N.: A modified Chebyshev’s iterative method with at least sixth order of convergence. Appl. Math. Comput. 206, 164–174 (2008)Chun, C., St a˘{\breve{a}} a ˘ nic a˘{\breve{a}} a ˘ , P., Neta, B.: Third-order family of methods in Banach spaces. Comput. Math. Appl. 61, 1665–1675 (2011)Ostrowski, A.M.: Solution of equations in Euclidean and Banach spaces, 3rd edn. Academic Press, New-York (1977)Jaiswal J.P.: Semilocal convergence of an eighth-order method in Banach spaces and its computational efficiency. Numer. Algorithms 71, 933–951 (2015)Traub, J.F.: Iterative methods for the solution of equations. Prentice-Hall, Englewood Cliffs (1964

    A Parameterized multi-step Newton method for solving systems of nonlinear equations

    Get PDF
    We construct a novel multi-step iterative method for solving systems of nonlinear equations by introducing a parameter. to generalize the multi-step Newton method while keeping its order of convergence and computational cost. By an appropriate selection of theta, the new method can both have faster convergence and have larger radius of convergence. The new iterative method only requires one Jacobian inversion per iteration, and therefore, can be efficiently implemented using Krylov subspace methods. The new method can be used to solve nonlinear systems of partial differential equations, such as complex generalized Zakharov systems of partial differential equations, by transforming them into systems of nonlinear equations by discretizing approaches in both spatial and temporal independent variables such as, for instance, the Chebyshev pseudo-spectral discretizing method. Quite extensive tests show that the new method can have significantly faster convergence and significantly larger radius of convergence than the multi-step Newton method.Peer ReviewedPostprint (author's final draft

    Free Boundary Formulation for BVPs on a Semi-Infinite Interval and Non-Iterative Transformation Methods

    Full text link
    This paper is concerned with two examples on the application of the free boundary formulation to BVPs on a semi-infinite interval. In both cases we are able to provide the exact solution of both the BVP and its free boundary formulation. Therefore, these problems can be used as benchmarks for the numerical methods applied to BVPs on a semi-infinite interval and to free BVPs. Moreover, we emphasize how for two classes of free BVPs, we can define non-iterative initial value methods, whereas BVPs are usually solved iteratively. These non-iterative methods can be deduced within Lie's group invariance theory. Then, we show how to apply the non-iterative methods to the two introduced free boundary formulations in order to obtain meaningful numerical results. Finally, we indicate several problems from the literature where our non-iterative transformation methods can be applied.Comment: 30 pages, 7 figures, 4 table
    corecore