983 research outputs found

    A spiral model for adding automatic, adaptive authoring to adaptive hypermedia

    Get PDF
    At present a large amount of research exists into the design and implementation of adaptive systems. However, not many target the complex task of authoring in such systems, or their evaluation. In order to tackle these problems, we have looked into the causes of the complexity. Manual annotation has proven to be a bottleneck for authoring of adaptive hypermedia. One such solution is the reuse of automatically generated metadata. In our previous work we have proposed the integration of the generic Adaptive Hypermedia authoring environment, MOT ( My Online Teacher), and a semantic desktop environment, indexed by Beagle++. A prototype, Sesame2MOT Enricher v1, was built based upon this integration approach and evaluated. After the initial evaluations, a web-based prototype was built (web-based Sesame2MOT Enricher v2 application) and integrated in MOT v2, conforming with the findings of the first set of evaluations. This new prototype underwent another evaluation. This paper thus does a synthesis of the approach in general, the initial prototype, with its first evaluations, the improved prototype and the first results from the most recent evaluation round, following the next implementation cycle of the spiral model [Boehm, 88]

    Defining adaptation in a generic multi layer model : CAM: the GRAPPLE conceptual adaptation model

    Get PDF
    Authoring of Adaptive Hypermedia is a difficult and time consuming task. Reference models like LAOS and AHAM separate adaptation and content in different layers. Systems like AHA! offer graphical tools based on these models to allow authors to define adaptation without knowing any adaptation language. The adaptation that can be defined using such tools is still limited. Authoring systems like MOT are more flexible, but usability of adaptation specification is low. This paper proposes a more generic model which allows the adaptation to be defined in an arbitrary number of layers, where adaptation is expressed in terms of relationships between concepts. This model allows the creation of more powerful yet easier to use graphical authoring tools. This paper presents the structure of the Conceptual Adaptation Models used in adaptive applications created within the GRAPPLE adaptive learning environment, and their representation in a graphical authoring tool

    Defining adaptation in a generic multi layer model : CAM: the GRAPPLE conceptual adaptation model

    Get PDF
    Authoring of Adaptive Hypermedia is a difficult and time consuming task. Reference models like LAOS and AHAM separate adaptation and content in different layers. Systems like AHA! offer graphical tools based on these models to allow authors to define adaptation without knowing any adaptation language. The adaptation that can be defined using such tools is still limited. Authoring systems like MOT are more flexible, but usability of adaptation specification is low. This paper proposes a more generic model which allows the adaptation to be defined in an arbitrary number of layers, where adaptation is expressed in terms of relationships between concepts. This model allows the creation of more powerful yet easier to use graphical authoring tools. This paper presents the structure of the Conceptual Adaptation Models used in adaptive applications created within the GRAPPLE adaptive learning environment, and their representation in a graphical authoring tool

    Third international workshop on Authoring of adaptive and adaptable educational hypermedia (A3EH), Amsterdam, 18-22 July, 2005

    Get PDF
    The A3EH follows a successful series of workshops on Adaptive and Adaptable Educational Hypermedia. This workshop focuses on models, design and authoring of AEH, on assessment of AEH, conversion between AEH and evaluation of AEH. The workshop has paper presentations, poster session and panel discussions

    Design of the CAM model and authoring tool

    Get PDF
    Students benefit from personalised attention; however, often teachers are unable to provide this. An Adaptive Hypermedia (AH) system can offer a richer learning experience in an educational environment, by giving personalised attention to students. On-line courses are becoming increasingly popular by means of Learning Management Systems (LSM). The aim of the GRAPPLE project is to integrate an AH with major LMS, to provide an environment that delivers personalised courses in a LMS interface. However, designing an AH is a much more complex and time-consuming task, than creating a course in a LMS. Several models and systems were developed previously, but the (re)-usability by educational authors of the adaptation remains limited. To simplify adaptive behaviour authoring for an educational author, a visual environment was selected as being most intuitive. This paper describes a reference model for authoring in a visual way and introduces an authoring tool based upon this model

    A meta level to LAG for adaptation language re-use

    Get PDF
    Recently, a growing body of research targets authoring of content and adaptation strategies for adaptive systems. The driving force behind it is semantics-based reuse: the same adaptation strategy can be used for various domains, and vice versa. E.g., a Java course can be taught via a strategy differentiating between beginner and advanced users, or between visual versus verbal users. Whilst using an Adaptation Language (LAG) to express reusable adaptation strategies, we noticed, however, that: a) the created strategies have common patterns that, themselves, could be reused; b) templates based on these patterns could reduce the designers' work; c) there is a strong preference towards XML-based processing and interfacing. This has lead us to define a new meta-language for the LAG Adaptation Language, facilitating the extraction of common design patterns. This paper provides more insight into the LAG language, as well as describes this meta-language, and shows how introducing it can overcome some redundancy issues

    Social e-learning in topolor : a case study

    Get PDF
    Social e-learning is a process through which learners achieve their learning goals via social interactions with each other by sharing knowledge, skills, abilities and educational materials. Adaptive e-learning enables adaptation and personalization of the learning process, based on learner needs, knowledge, preferences and other characteristics. In this paper, we present a case study that analyzes the social interaction features of a social personalized adaptive e-learning system developed at the University of Warwick, called Topolor. We discuss the results of a quantitative case study that evaluates the perceived usefulness and usability. The results demonstrate a generally high level of learner satisfaction with their learning experience. We extend the discussion of the results to explore future research directions and suggest further improvements for the studied social personalized adaptive e-learning system

    Model-driven transformation and validation of adaptive educational hypermedia using CAVIAr

    Get PDF
    Authoring of Adaptive Educational Hypermedia is a complex activity requiring the combination of a range of design and validation techniques.We demonstrate how Adaptive Educational Hypermedia can be transformed into CAVIAr courseware validation models allowing for its validation. The model-based representation and analysis of different concerns and model-based mappings and transformations are key contributors to this integrated solution. We illustrate the benefits of Model Driven Engineering methodologies that allow for interoperability between CAVIAr and a well known Adaptive Educational Hypermedia framework. By allowing for the validation of Adaptive Educational Hypermedia, the course creator limits the risk of pedagogical problems in migrating to Adaptive Educational Hypermedia from static courseware

    MOT meets AHA!

    Get PDF
    MOT (My Online Teacher) is an adaptive hypermedia system (AHS) web-authoring environment. MOT is now being further developed according to the LAOS five-layer adaptation model for adaptive hypermedia and adaptive web-material, containing a domain -, goal -, user -, adaptation ā€“ and presentation model. The adaptation itself follows the LAG three-layer granularity structure, figuring direct adaptation techniques and rules, an adaptation language and adaptation strategies. In this paper we shortly describe the theoretical basis of MOT, i.e., LAOS and LAG, and then give some information about the current state of MOT. The purpose of this paper is to show how we plan the design and development of MOT and the well-known system AHA! (Adaptive Hypermedia Architecture), developed at the Technical University of Eindhoven since 1996. We aim especially at the integration with AHA! 2.0. Although AHA! 2.0 represents a progress when compared to the previous versions, a lot of adaptive features that are described by the LAOS and the adaptation granulation model and that are being implemented into MOT are not yet (directly) available. So therefore AHA! can benefit from MOT. On the other hand, AHA! offers a running platform for the adaptation engine, which can benefit MOT in return
    • ā€¦
    corecore