19,454 research outputs found

    A new advanced railgun system for debris impact study

    Get PDF
    The growing quantity of debris in Earth orbit poses a danger to users of the orbital environment, such as spacecraft. It also increases the risk that humans or manmade structures could be impacted when objects reenter Earth's atmosphere. During the design of a spacecraft, a requirement may be specified for the surviv-ability of the spacecraft against Meteoroid / Orbital Debris (M/OD) impacts throughout the mission; further-more, the structure of a spacecraft is designed to insure its integrity during the launch and, if it is reusable, during descent, re-entry and landing. In addition, the structure has to provide required stiffness in order to allow for exact positioning of experiments and antennas, and it has to protect the payload against the space environment. In order to decrease the probability of spacecraft failure caused by M/OD, space maneuver is needed to avoid M/OD if the M/OD has dimensions larger than 10cm, but for M/OD with dimensions less than 1cm M/OD shields are needed for spacecrafts. It is therefore necessary to determine the impact-related failure mechanisms and associated ballistic limit equations (BLEs) for typical spacecraft components and subsys-tems. The methods that are used to obtain the ballistic limit equations are numerical simulations and la-borato-ry experiments. In order to perform an high energy ballistic characterization of layered structures, a new ad-vanced electromagnetic accelerator, called railgun, has been assembled and tuned. A railgun is an electrically powered electromagnetic projectile launcher. Such device is made up of a pair of parallel conducting rails, which a sliding metallic armature is accelerated along by the electromagnetic effect (Lorentz force) of a cur-rent that flows down one rail, into the armature and then back along the other rail, thanks to a high power pulse given by a bank of capacitors. A tunable power supplier is used to set the capacitors charging voltage at the desired level: in this way the Rail Gun energy can be tuned as a function of the desired bullet velocity. This facility is able to analyze both low and high velocity impacts. A numerical simulation is also performed by using the Ansys Autodyn code in order to analyze the damage. The experimental results and numerical simulations show that the railgun-device is a good candidate to perform impact testing of materials in the space debris energy range

    Estimation of Effective Elastic Properties of General Multifunctional Honeycomb Structures Using a Unit Cell Method

    Get PDF
    Sandwich composite structures are ideal configurations in which to incorporate additional functionality beyond load carrying capabilities. The inner core can be layered to facilitate other functions such as power storage for a battery. In this work we investigate an assemblage of analytical tools to compute effective properties that allow complex layered core architectures to be homogenized into a single continuum layer. This provides a great increase in computational efficiency to numerically simulate the structural response of multifunctional sandwich structures under applied loads

    Integrated process planning for a hybrid manufacturing system

    Get PDF
    A hybrid manufacturing system integrated CNC machining and laser-aided layered deposition and achieves the benefits of both processes. In this dissertation, an integrated process planning framework which aims to automate the hybrid manufacturing process is investigated. Critical components of the process planning, including 3D spatial decomposition of the CAD model, improvement of the toolpath generation pattern, repairing strategies using a hybrid manufacturing system, etc., are discussed --Abstract, page iv

    From 3D Models to 3D Prints: an Overview of the Processing Pipeline

    Get PDF
    Due to the wide diffusion of 3D printing technologies, geometric algorithms for Additive Manufacturing are being invented at an impressive speed. Each single step, in particular along the Process Planning pipeline, can now count on dozens of methods that prepare the 3D model for fabrication, while analysing and optimizing geometry and machine instructions for various objectives. This report provides a classification of this huge state of the art, and elicits the relation between each single algorithm and a list of desirable objectives during Process Planning. The objectives themselves are listed and discussed, along with possible needs for tradeoffs. Additive Manufacturing technologies are broadly categorized to explicitly relate classes of devices and supported features. Finally, this report offers an analysis of the state of the art while discussing open and challenging problems from both an academic and an industrial perspective.Comment: European Union (EU); Horizon 2020; H2020-FoF-2015; RIA - Research and Innovation action; Grant agreement N. 68044

    Microstructural Characterization of LENS\u3csup\u3eTM\u3c/sup\u3e Ti-6Al-4V: Investigating the Effects of Process Variables Across Multiple Deposit Geometries

    Get PDF
    Laser based additive manufacturing of Ti-6Al-4V components is under consideration for aerospace applications. The mechanical properties of the finished components depend on their microstructure. Process mapping compares process variables such as heat source power, heat source travel speed, material feed rate, part preheat temperature and feature geometry to process outcomes such as microstructure, melt pool geometry and residual stresses. In this work, the microstructure of two-dimensional pads, multilayer pads, thin walls, and structural components at the steady state location was observed. A method for measuring β grain widths that allows for the calculation of standard deviations, confidence intervals, and variances in grain size was developed. This represents an improvement over the commonly used line-intercept method. The method was used to compare variability of β grain widths across different part geometries. It was found that thin wall parts have the highest β width variability and that the width of the β grains varies more towards the top of multi-layered samples than towards the bottom. Experimental results for α and β grain size across multiple deposit geometries are presented that offer new insight into the effect of process variables on microstructure. β grain widths are also compared for different deposit geometries with the same power, velocity, and feed rate. Single layer pad geometries were found to have the smallest β grain widths, multi-layer pads had larger β grain widths, and thin wall samples had the largest β grain widths. Trends in α width with Vickers hardness were also considered in the context of thermal gradient measurements. Hardness maps were created for the structural component samples. Optical microscopy was used to observe a layering effect in structural component samples. It was found that light and dark bands had different Vickers microhardness values
    • …
    corecore