10,375 research outputs found

    A rapidly converging domain decomposition method for the Helmholtz equation

    Full text link
    A new domain decomposition method is introduced for the heterogeneous 2-D and 3-D Helmholtz equations. Transmission conditions based on the perfectly matched layer (PML) are derived that avoid artificial reflections and match incoming and outgoing waves at the subdomain interfaces. We focus on a subdivision of the rectangular domain into many thin subdomains along one of the axes, in combination with a certain ordering for solving the subdomain problems and a GMRES outer iteration. When combined with multifrontal methods, the solver has near-linear cost in examples, due to very small iteration numbers that are essentially independent of problem size and number of subdomains. It is to our knowledge only the second method with this property next to the moving PML sweeping method.Comment: 16 pages, 3 figures, 6 tables - v2 accepted for publication in the Journal of Computational Physic

    Diffuse-Charge Dynamics in Electrochemical Systems

    Full text link
    The response of a model micro-electrochemical system to a time-dependent applied voltage is analyzed. The article begins with a fresh historical review including electrochemistry, colloidal science, and microfluidics. The model problem consists of a symmetric binary electrolyte between parallel-plate, blocking electrodes which suddenly apply a voltage. Compact Stern layers on the electrodes are also taken into account. The Nernst-Planck-Poisson equations are first linearized and solved by Laplace transforms for small voltages, and numerical solutions are obtained for large voltages. The ``weakly nonlinear'' limit of thin double layers is then analyzed by matched asymptotic expansions in the small parameter ϵ=λD/L\epsilon = \lambda_D/L, where λD\lambda_D is the screening length and LL the electrode separation. At leading order, the system initially behaves like an RC circuit with a response time of λDL/D\lambda_D L / D (not λD2/D\lambda_D^2/D), where DD is the ionic diffusivity, but nonlinearity violates this common picture and introduce multiple time scales. The charging process slows down, and neutral-salt adsorption by the diffuse part of the double layer couples to bulk diffusion at the time scale, L2/DL^2/D. In the ``strongly nonlinear'' regime (controlled by a dimensionless parameter resembling the Dukhin number), this effect produces bulk concentration gradients, and, at very large voltages, transient space charge. The article concludes with an overview of more general situations involving surface conduction, multi-component electrolytes, and Faradaic processes.Comment: 10 figs, 26 pages (double-column), 141 reference

    Dynamics of the Innermost Accretion Flows Around Compact Objects: Magnetosphere-Disc Interface, Global Oscillations and Instabilities

    Full text link
    We study global non-axisymmetric oscillation modes and instabilities in magnetosphere- disc systems, as expected in neutron star X-ray binaries and possibly also in accreting black hole systems. Our two-dimensional magnetosphere-disc model consists of a Keplerian disc in contact with an uniformly rotating magnetosphere with low plasma density. Two types of global overstable modes exist in such systems, the interface modes and the disc inertial-acoustic modes. We examine various physical effects and parameters that influence the properties of these oscillation modes, particularly their growth rates, including the magnetosphere field configuration, the velocity and density contrasts across the magnetosphere-disc interface, the rotation profile (with Newtonian or General Relativistic potential), the sound speed and magnetic field of the disc. The interface modes are driven unstable by Rayleigh-Taylor and Kelvin-Helmholtz in- stabilities, but can be stabilized by the toroidal field (through magnetic tension) and disc differential rotation (through finite vorticity). General relativity increases their growth rates by modifying the disc vorticity outside the magnetosphere boundary. The interface modes may also be affected by wave absorption associated with corotation resonance in the disc. In the presence of a magnetosphere, the inertial-acoustic modes are effectively trapped at the innermost region of the relativistic disc just outside the interface. They are driven unstable by wave absorption at the corotation resonance, but can be stabilized by modest disc magnetic fields. The overstable oscillation modes studied in this paper have characteristic properties that make them possible candidates for the quasi-periodic oscillations observed in X-ray binaries.Comment: 18 pages, 9 figures, MNRAS accepte

    Induced-Charge Electro-Osmosis

    Get PDF
    We describe the general phenomenon of `induced-charge electro-osmosis' (ICEO) -- the nonlinear electro-osmotic slip that occurs when an applied field acts on the ionic charge it {\sl induces} around a polarizable surface. Motivated by a simple physical picture, we calculate ICEO flows around conducting cylinders in steady (DC), oscillatory (AC), and suddenly-applied electric fields. This picture, and these systems, represent perhaps the clearest example of nonlinear electrokinetic phenomena. We complement and verify this physically-motivated approach using a matched asymptotic expansion to the electrokinetic equations in the thin double-layer and low potential limits. ICEO slip velocities vary like usE02Lu_s \propto E_0^2 L, where E0E_0 is the field strength and LL is a geometric length scale, and are set up on a time scale τc=λDL/D\tau_c = \lambda_D L/D, where λD\lambda_D is the screening length and DD is the ionic diffusion constant. We propose and analyze ICEO microfluidic pumps and mixers that operate without moving parts under low applied potentials. Similar flows around metallic colloids with fixed total charge have been described in the Russian literature (largely unnoticed in the West). ICEO flows around conductors with fixed potential, on the other hand, have no colloidal analog and offer further possibilities for microfluidic applications.Comment: 36 pages, 8 figures, to appear in J. Fluid Mec
    corecore