20 research outputs found

    RF Power Transfer, Energy Harvesting, and Power Management Strategies

    Get PDF
    Energy harvesting is the way to capture green energy. This can be thought of as a recycling process where energy is converted from one form (here, non-electrical) to another (here, electrical). This is done on the large energy scale as well as low energy scale. The former can enable sustainable operation of facilities, while the latter can have a significant impact on the problems of energy constrained portable applications. Different energy sources can be complementary to one another and combining multiple-source is of great importance. In particular, RF energy harvesting is a natural choice for the portable applications. There are many advantages, such as cordless operation and light-weight. Moreover, the needed infra-structure can possibly be incorporated with wearable and portable devices. RF energy harvesting is an enabling key player for Internet of Things technology. The RF energy harvesting systems consist of external antennas, LC matching networks, RF rectifiers for ac to dc conversion, and sometimes power management. Moreover, combining different energy harvesting sources is essential for robustness and sustainability. Wireless power transfer has recently been applied for battery charging of portable devices. This charging process impacts the daily experience of every human who uses electronic applications. Instead of having many types of cumbersome cords and many different standards while the users are responsible to connect periodically to ac outlets, the new approach is to have the transmitters ready in the near region and can transfer power wirelessly to the devices whenever needed. Wireless power transfer consists of a dc to ac conversion transmitter, coupled inductors between transmitter and receiver, and an ac to dc conversion receiver. Alternative far field operation is still tested for health issues. So, the focus in this study is on near field. The goals of this study are to investigate the possibilities of RF energy harvesting from various sources in the far field, dc energy combining, wireless power transfer in the near field, the underlying power management strategies, and the integration on silicon. This integration is the ultimate goal for cheap solutions to enable the technology for broader use. All systems were designed, implemented and tested to demonstrate proof-of concept prototypes

    Low-Power Energy Efficient Circuit Techniques for Small IoT Systems

    Full text link
    Although the improvement in circuit speed has been limited in recent years, there has been increased focus on the internet of things (IoT) as technology scaling has decreased circuit size, power usage and cost. This trend has led to the development of many small sensor systems with affordable costs and diverse functions, offering people convenient connection with and control over their surroundings. This dissertation discusses the major challenges and their solutions in realizing small IoT systems, focusing on non-digital blocks, such as power converters and analog sensing blocks, which have difficulty in following the traditional scaling trends of digital circuits. To accommodate the limited energy storage and harvesting capacity of small IoT systems, this dissertation presents an energy harvester and voltage regulators with low quiescent power and good efficiency in ultra-low power ranges. Switched-capacitor-based converters with wide-range energy-efficient voltage-controlled oscillators assisted by power-efficient self-oscillating voltage doublers and new cascaded converter topologies for more conversion ratio configurability achieve efficient power conversion down to several nanowatts. To further improve the power efficiency of these systems, analog circuits essential to most wireless IoT systems are also discussed and improved. A capacitance-to-digital sensor interface and a clocked comparator design are improved by their digital-like implementation and operation in phase and frequency domain. Thanks to the removal of large passive elements and complex analog blocks, both designs achieve excellent area reduction while maintaining state-of-art energy efficiencies. Finally, a technique for removing dynamic voltage and temperature variations is presented as smaller circuits in advanced technologies are more vulnerable to these variations. A 2-D simultaneous feedback control using an on-chip oven control locks the supply voltage and temperature of a small on-chip domain and protects circuits in this locked domain from external voltage and temperature changes, demonstrating 0.0066 V/V and 0.013 °C/°C sensitivities to external changes. Simple digital implementation of the sensors and most parts of the control loops allows robust operation within wide voltage and temperature ranges.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/138743/1/wanyeong_1.pd

    Power Management Circuits for Energy Harvesting Applications

    Get PDF
    Energy harvesting is the process of converting ambient available energy into usable electrical energy. Multiple types of sources are can be used to harness environmental energy: solar cells, kinetic transducers, thermal energy, and electromagnetic waves. This dissertation proposal focuses on the design of high efficiency, ultra-low power, power management units for DC energy harvesting sources. New architectures and design techniques are introduced to achieve high efficiency and performance while achieving maximum power extraction from the sources. The first part of the dissertation focuses on the application of inductive switching regulators and their use in energy harvesting applications. The second implements capacitive switching regulators to minimize the use of external components and present a minimal footprint solution for energy harvesting power management. Analysis and theoretical background for all switching regulators and linear regulators are described in detail. Both solutions demonstrate how low power, high efficiency design allows for a self-sustaining, operational device which can tackle the two main concerns for energy harvesting: maximum power extraction and voltage regulation. Furthermore, a practical demonstration with an Internet of Things type node is tested and positive results shown by a fully powered device from harvested energy. All systems were designed, implemented and tested to demonstrate proof-of-concept prototypes

    An Input Power-Aware Maximum Efficiency Tracking Technique for Energy Harvesting in IoT Applications

    Get PDF
    The Internet of Things (IoT) enables intelligent monitoring and management in many applications such as industrial and biomedical systems as well as environmental and infrastructure monitoring. As a result, IoT requires billions of wireless sensor network (WSN) nodes equipped with a microcontroller and transceiver. As many of these WSN nodes are off-grid and small-sized, their limited-capacity batteries need periodic replacement. To mitigate the high costs and challenges of these battery replacements, energy harvesting from ambient sources is vital to achieve energy-autonomous operation. Energy harvesting for WSNs is challenging because the available energy varies significantly with ambient conditions and in many applications, energy must be harvested from ultra-low power levels. To tackle these stringent power constraints, this dissertation proposes a discontinuous charging technique for switched-capacitor converters that improves the power conversion efficiency (PCE) at low input power levels and extends the input power harvesting range at which high PCE is achievable. Discontinuous charging delivers current to energy storage only during clock non-overlap time. This enables tuning of the output current to minimize converter losses based on the available input power. Based on this fundamental result, an input power-aware, two-dimensional efficiency tracking technique for WSNs is presented. In addition to conventional switching frequency control, clock nonoverlap time control is introduced to adaptively optimize the power conversion efficiency according to the sensed ambient power levels. The proposed technique is designed and simulated in 90nm CMOS with post-layout extraction. Under the same input and output conditions, the proposed system maintains at least 45% PCE at 4ÎĽW input power, as opposed to a conventional continuous system which requires at least 18.7ÎĽW to maintain the same PCE. In this technique, the input power harvesting range is extended by 1.5x. The technique is applied to a WSN implementation utilizing the IEEE 802.15.4- compatible GreenNet communications protocol for industrial and wearable applications. This allows the node to meet specifications and achieve energy autonomy when deployed in harsher environments where the input power is 49% lower than what is required for conventional operation

    Robustness and durability aspects in the design of power management circuits for IoT applications

    Get PDF
    With the increasing interest in the heterogeneous world of the “Internet of Things” (IoT), new compelling challenges arise in the field of electronic design, especially concerning the development of innovative power management solutions. Being this diffusion a consolidated reality nowadays, emerging needs like lifetime, durability and robustness are becoming the new watchwords for power management, being a common ground which can dramatically improve service life and confidence in these devices. The possibility to design nodes which do not need external power supply is a crucial point in this scenario. Moreover, the development of autonomous nodes which are substantially maintenance free, and which therefore can be placed in unreachable or harsh environments is another enabling aspect for the exploitation of this technology. In this respect, the study of energy harvesting techniques is increasingly earning interest again. Along with efficiency aspects, degradation aspects are the other main research field with respect to lifetime, durability and robustness of IoT devices, especially related to aging mechanisms which are peculiar in power management and power conversion circuits, like for example battery wear during usage or hot-carrier degradation (HCD) in power MOSFETs. In this thesis different aspects related to lifetime, durability and robustness in the field of power management circuits are studied, leading to interesting contributions. Innovative designs of DC/DC power converters are studied and developed, especially related to reliability aspects of the use of electrochemical cells as power sources. Moreover, an advanced IoT node is proposed, based on energy harvesting techniques, which features an intelligent dynamically adaptive power management circuit. As a further contribution, a novel algorithm is proposed, which is able to effectively estimate the efficiency of a DC/DC converter for photovoltaic applications at runtime. Finally, an innovative DC/DC power converter with embedded monitoring of hot-carrier degradation in power MOSFETs is designed

    A Single Inductor, Multiple Input Piezoelectric Interface Circuit Capable of Harvesting Energy from Asynchronously Vibrating Sources

    Get PDF
    The energy harvesting industry has seen steady growth in recent years. This growth has been driven by the increasing demand for remote sensing, implantable technologies, and increased battery life in mobile and hand held devices. Due to the limited amount of energy available from ambient sources, any system that attempts to harness energy from them should necessarily be highly efficient to make the net output power useful. A lot of work has been done on minimizing losses in piezoelectric energy harvesters. Most of this has however been limited to harvesters with single vibration sources or multiple sources vibrating synchronously. This work presents a multiple input piezoelectric energy harvester capable of harvesting from multiple piezoelectric energy sources vibrating asynchronously (at different frequencies, or at the same frequency but in different phases) using a single inductor. The use of a single inductor eliminates the extra quiescent power consumption, component count, printed circuit board real estate that would have been incurred by using a one inductor per input device. The inductor is time shared between three input devices using a digital control circuit which regulate access to the inductor while avoiding any destructive interaction between the input devices. The chip was designed in a 0.18µm technology and achieves a conversion efficiency of 60%. Testing with three asynchronously vibrating sources shows that the chip extracts maximum power from all inputs simultaneously, independent of vibration frequency or phase

    Interface Circuits for Microsensor Integrated Systems

    Get PDF
    ca. 200 words; this text will present the book in all promotional forms (e.g. flyers). Please describe the book in straightforward and consumer-friendly terms. [Recent advances in sensing technologies, especially those for Microsensor Integrated Systems, have led to several new commercial applications. Among these, low voltage and low power circuit architectures have gained growing attention, being suitable for portable long battery life devices. The aim is to improve the performances of actual interface circuits and systems, both in terms of voltage mode and current mode, in order to overcome the potential problems due to technology scaling and different technology integrations. Related problems, especially those concerning parasitics, lead to a severe interface design attention, especially concerning the analog front-end and novel and smart architecture must be explored and tested, both at simulation and prototype level. Moreover, the growing demand for autonomous systems gets even harder the interface design due to the need of energy-aware cost-effective circuit interfaces integrating, where possible, energy harvesting solutions. The objective of this Special Issue is to explore the potential solutions to overcome actual limitations in sensor interface circuits and systems, especially those for low voltage and low power Microsensor Integrated Systems. The present Special Issue aims to present and highlight the advances and the latest novel and emergent results on this topic, showing best practices, implementations and applications. The Guest Editors invite to submit original research contributions dealing with sensor interfacing related to this specific topic. Additionally, application oriented and review papers are encouraged.

    Energy Neutral Design of Embedded Systems for Resource Constrained Monitoring Applications

    Get PDF
    Automatic monitoring of environments, resouces and human processes are crucial and foundamental tasks to improve people's quality of life and to safeguard the natural environment. Today, new technologies give us the possibility to shape a greener and safer future. The more specialized is the kind of monitoring we want to achieve, more tight are the constraints in terms of reliability, low energy and maintenance-free autonomy. The challenge in case of tight energy constraints is to find new techniques to save as much power as possible or to retrieve it from the very same environment where the system operates, towards the realization of energy neutral embedded monitoring systems. Energy efficiency and battery autonomy of such devices are still the major problem impacting reliability and penetration of such systems in risk-related activities of our daily life. Energy management must not be optimized to the detriment of the quality of monitoring and sensors can not be operated without supply. In this thesis, I present different embedded system designs to bridge this gap, both from the hardware and software sides, considering specific resource constrained scenarios as case studies that have been used to develop solutions with much broader validity. Results achieved demonstrate that energy neutrality in monitoring under resource constrained conditions can be obtained without compromising efficiency and reliability of the outcomes

    Perpetual Sensing: Experiences with Energy-Harvesting Sensor Systems

    Full text link
    Industry forecasts project the number of connected devices will outpace the global population by orders of magnitude in the next decade or two. These projections are application driven: smart cities, implantable health monitors, responsive buildings, autonomous robots, driverless cars, and instrumented infrastructure are all expected to be drivers for the growth of networked devices. Achieving this immense scale---potentially trillions of smart and connected sensors and computers, popularly called the "Internet of Things"---raises a host of challenges including operating system design, networking protocols, and orchestration methodologies. However, another critical issue may be the most fundamental: If embedded computers outnumber people by a factor of a thousand, how are we going to keep all of these devices powered? In this dissertation, we show that energy-harvesting operation, by which devices scavenge energy from their surroundings to power themselves after they are deployed, is a viable answer to this question. In particular, we examine a range of energy-harvesting sensor node designs for a specific application: smart buildings. In this application setting, the devices must be small and sleek to be unobtrusively and widely deployed, yet shrinking the devices also reduces their energy budgets as energy storage often dominates their volume. Additionally, energy-harvesting introduces new challenges for these devices due to the intermittent access to power that stems from relying on unpredictable ambient energy sources. To address these challenges, we present several techniques for realizing effective sensors despite the size and energy constraints. First is Monjolo, an energy metering system that exploits rather than attempts to mask the variability in energy-harvesting by using the energy harvester itself as the sensor. Building on Monjolo, we show how simple time synchronization and an application specific sensor can enable accurate, building-scale submetering while remaining energy-harvesting. We also show how energy-harvesting can be the foundation for highly deployable power metering, as well as indoor monitoring and event detection. With these sensors as a guide, we present an architecture for energy-harvesting systems that provides layered abstractions and enables modular component reuse. We also couple these sensors with a generic and reusable gateway platform and an application-layer cloud service to form an easy-to-deploy building sensing toolkit, and demonstrate its effectiveness by performing and analyzing several modest-scale deployments.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/138686/1/bradjc_1.pd
    corecore