15,231 research outputs found

    Tracking energy fluctuations from fragment partitions in the Lattice Gas model

    Full text link
    Partial energy fluctuations are known tools to reconstruct microcanonical heat capacities. For experimental applications, approximations have been developed to infer fluctuations at freeze out from the observed fragment partitions. The accuracy of this procedure as well as the underlying independent fragment approximation is under debate already at the level of equilibrated systems. Using a well controlled computer experiment, the Lattice Gas model, we critically discuss the thermodynamic conditions under which fragment partitions can be used to reconstruct the thermodynamics of an equilibrated system.Comment: version accepted for publication in Phys.Rev.

    Multifragmentation - what the data tell us about the different models

    Get PDF
    We discuss what the presently collected data tell us about the mechanism of multifragmentation by comparing the results of two different models, which assume or show an opposite reaction scenario, with the recent high statistics 4π4\pi experiments performed by the INDRA collaboration. We find that the statistical multifragmentation model and the dynamical Quantum Molecular Dynamics approach produce almost the same results and agree both quite well with experiment. We discuss which observables may serve to overcome this deadlock on the quest for the reaction mechanism. Finally we proof that even if the system is in equilibrium, the fluctuation of the temperature due to the smallness of the system renders the caloric curve useless for the proof of a first order phase transition.Comment: Proceedings CRIS 200

    Structures and proton-pumping strategies of mitochondrial respiratory enzymes

    Get PDF
    Enzymes of the mitochondrial respiratory chain serve as proton pumps, using the energy made available from electron transfer reactions to transport protons across the inner mitochondrial membrane and create an electrochemical gradient used for the production of ATP. The ATP synthase enzyme is reversible and can also serve as a proton pump by coupling ATP hydrolysis to proton translocation. Each of the respiratory enzymes uses a different strategy for performing proton pumping. In this work, the strategies are described and the structural bases for the action of these proteins are discussed in light of recent crystal structures of several respiratory enzymes. The mechanisms and efficiency of proton translocation are also analyzed in terms of the thermodynamics of the substrate transformations catalyzed by these enzymes

    Fragmentation Phase Transition in Atomic Clusters II - Coulomb Explosion of Metal Clusters -

    Full text link
    We discuss the role and the treatment of polarization effects in many-body systems of charged conducting clusters and apply this to the statistical fragmentation of Na-clusters. We see a first order microcanonical phase transition in the fragmentation of Na70Z+Na^{Z+}_{70} for Z=0 to 8. We can distinguish two fragmentation phases, namely evaporation of large particles from a large residue and a complete decay into small fragments only. Charging the cluster shifts the transition to lower excitation energies and forces the transition to disappear for charges higher than Z=8. At very high charges the fragmentation phase transition no longer occurs because the cluster Coulomb-explodes into small fragments even at excitation energy ϵ=0\epsilon^* = 0.Comment: 19 text pages +18 *.eps figures, my e-mail adress: [email protected] submitted to Z. Phys.

    The multifragmentation of spectator matter

    Full text link
    We present the first microscopic calculation of the spectator fragmentation observed in heavy ion reactions at relativistic energies which reproduces the slope of the kinetic energy spectra of the fragments as well as their multiplicity, both measured by the ALADIN collaboration. In the past both have been explained in thermal models, however with vastly different assumptions about the excitation energy and the density of the system. We show that both observables are dominated by dynamical processes and that the system does not pass a state of thermal equilibrium. These findings question the recent conjecture that in these collisions a phase transition of first order, similar to that between water and vapor, can be observed.Comment: 7 page

    Fragmentation phase transition in atomic clusters I --- Microcanonical thermodynamics

    Full text link
    Here we first develop the thermodynamics of microcanonical phase transitions of first and second order in systems which are thermodynamically stable in the sense of van Hove. We show how both kinds of phase transitions can unambiguously be identified in relatively small isolated systems of 100\sim 100 atoms by the shape of the microcanonical caloric equation of state I.e. within microcanonical thermodynamics one does not need to go to the thermodynamic limit in order to identify phase transitions. In contrast to ordinary (canonical) thermodynamics of the bulk microcanonical thermodynamics (MT) gives an insight into the coexistence region. The essential three parameters which identify the transition to be of first order, the transition temperature TtrT_{tr}, the latent heat qlatq_{lat}, and the interphase surface entropy Δssurf\Delta s_{surf} can very well be determined in relatively small systems like clusters by MT. The phase transition towards fragmentation is introduced. The general features of MT as applied to the fragmentation of atomic clusters are discussed. The similarities and differences to the boiling of macrosystems are pointed out.Comment: Same as before, abstract shortened my e-mail address: [email protected]
    corecore