8,297 research outputs found

    Thermodynamic uncertainty relations in a linear system

    Full text link
    We consider a Brownian particle in harmonic confinement of stiffness kk, in one dimension in the underdamped regime. The whole setup is immersed in a heat bath at temperature TT. The center of harmonic trap is dragged under any arbitrary protocol. The thermodynamic uncertainty relations for both position of the particle and current at time tt are obtained using the second law of thermodynamics as well as the positive semi-definite property of the correlation matrix of work and degrees of freedom of the system for both underdamped and overdamped cases.Comment: Minor revision, Accepted in EPJ

    Anderson localization vs. Mott-Hubbard metal-insulator transition in disordered, interacting lattice fermion systems

    Full text link
    We review recent progress in our theoretical understanding of strongly correlated fermion systems in the presence of disorder. Results were obtained by the application of a powerful nonperturbative approach, the Dynamical Mean-Field Theory (DMFT), to interacting disordered lattice fermions. In particular, we demonstrate that DMFT combined with geometric averaging over disorder can capture Anderson localization and Mott insulating phases on the level of one-particle correlation functions. Results are presented for the ground-state phase diagram of the Anderson-Hubbard model at half filling, both in the paramagnetic phase and in the presence of antiferromagnetic order. We find a new antiferromagnetic metal which is stabilized by disorder. Possible realizations of these quantum phases with ultracold fermions in optical lattices are discussed.Comment: 25 pages, 5 figures, typos corrected, references update

    Quantum Thermodynamics

    Full text link
    Quantum thermodynamics addresses the emergence of thermodynamical laws from quantum mechanics. The link is based on the intimate connection of quantum thermodynamics with the theory of open quantum systems. Quantum mechanics inserts dynamics into thermodynamics giving a sound foundation to finite-time-thermodynamics. The emergence of the 0-law I-law II-law and III-law of thermodynamics from quantum considerations is presented. The emphasis is on consistence between the two theories which address the same subject from different foundations. We claim that inconsistency is the result of faulty analysis pointing to flaws in approximations

    Frenesy: time-symmetric dynamical activity in nonequilibria

    Full text link
    We review the concept of dynamical ensembles in nonequilibrium statistical mechanics as specified from an action functional or Lagrangian on spacetime. There, under local detailed balance, the breaking of time-reversal invariance is quantified via the entropy flux, and we revisit some of the consequences for fluctuation and response theory. Frenesy is the time-symmetric part of the path-space action with respect to a reference process. It collects the variable quiescence and dynamical activity as function of the system's trajectory, and as has been introduced under different forms in studies of nonequilibria. We discuss its various realizations for physically inspired Markov jump and diffusion processes and why it matters a good deal for nonequilibrium physics. This review then serves also as an introduction to the exploration of frenetic contributions in nonequilibrium phenomena

    A nonequilibrium extension of the Clausius heat theorem

    Full text link
    We generalize the Clausius (in)equality to overdamped mesoscopic and macroscopic diffusions in the presence of nonconservative forces. In contrast to previous frameworks, we use a decomposition scheme for heat which is based on an exact variant of the Minimum Entropy Production Principle as obtained from dynamical fluctuation theory. This new extended heat theorem holds true for arbitrary driving and does not require assumptions of local or close to equilibrium. The argument remains exactly intact for diffusing fields where the fields correspond to macroscopic profiles of interacting particles under hydrodynamic fluctuations. We also show that the change of Shannon entropy is related to the antisymmetric part under a modified time-reversal of the time-integrated entropy flux.Comment: 23 pages; v2: manuscript significantly extende

    Fermionic Networks: Modeling Adaptive Complex Networks with Fermionic Gases

    Full text link
    We study the structure of Fermionic networks, i.e., a model of networks based on the behavior of fermionic gases, and we analyze dynamical processes over them. In this model, particle dynamics have been mapped to the domain of networks, hence a parameter representing the temperature controls the evolution of the system. In doing so, it is possible to generate adaptive networks, i.e., networks whose structure varies over time. As shown in previous works, networks generated by quantum statistics can undergo critical phenomena as phase transitions and, moreover, they can be considered as thermodynamic systems. In this study, we analyze Fermionic networks and opinion dynamics processes over them, framing this network model as a computational model useful to represent complex and adaptive systems. Results highlight that a strong relation holds between the gas temperature and the structure of the achieved networks. Notably, both the degree distribution and the assortativity vary as the temperature varies, hence we can state that fermionic networks behave as adaptive networks. On the other hand, it is worth to highlight that we did not find relation between outcomes of opinion dynamics processes and the gas temperature. Therefore, although the latter plays a fundamental role in gas dynamics, on the network domain its importance is related only to structural properties of fermionic networks.Comment: 19 pages, 5 figure
    corecore