1,127 research outputs found

    Minimizing Thermal Stress for Data Center Servers through Thermal-Aware Relocation

    Get PDF
    A rise in inlet air temperature may lower the rate of heat dissipation from air cooled computing servers. This introduces a thermal stress to these servers. As a result, the poorly cooled active servers will start conducting heat to the neighboring servers and giving rise to hotspot regions of thermal stress, inside the data center. As a result, the physical hardware of these servers may fail, thus causing performance loss, monetary loss, and higher energy consumption for cooling mechanism. In order to minimize these situations, this paper performs the profiling of inlet temperature sensitivity (ITS) and defines the optimum location for each server to minimize the chances of creating a thermal hotspot and thermal stress. Based upon novel ITS analysis, a thermal state monitoring and server relocation algorithm for data centers is being proposed. The contribution of this paper is bringing the peak outlet temperatures of the relocated servers closer to average outlet temperature by over 5 times, lowering the average peak outlet temperature by 3.5% and minimizing the thermal stress

    An Optimization of Energy Saving in Cloud Environment

    Get PDF
    Cloud computing is a technology in distributed computing which facilitates pay per model based on user demand and requirement. Cloud can be defined as a collection of virtual machines. This includes both computational and storage facility. The goal of cloud computing is to provide efficient access to remote and geographically distributed resources. Cloud Computing is developing day by day and faces many challenges; one of them is i) Load Balancing and ii) Task scheduling. Load balancing is defined as division of the amount of work that a system has to do between two or more systems so that more work gets done in the same amount of time and all users get served faster. Load balancing can be implemented with hardware, software, or a combination of both. Load balancing is mainly used for server clustering. Task Scheduling is a set of policies to control the work order to be performed by a system. It is also a technique which is used to improve the overall execution time of the job. Task Scheduling is responsible for selection of best suitable resources for task execution, by taking some parameters into consideration. A good task scheduler adapts its scheduling strategy according to the changing environment and the type of task. In this paper, the Energy Saving Load Balancing (ESLB) Algorithm and Energy Saving Task Scheduling (ESTS) algorithm was proposed. The various scheduling algorithms (FCFS, RR, PRIORITY, and SJF) are reviewed and compared. The ESLB algorithm and ESTS algorithm was tested in cloudsim toolkit and the result shows better performance

    Advances in Dynamic Virtualized Cloud Management

    Get PDF
    Cloud computing continues to gain in popularity, with more and more applications being deployed into public and private clouds. Deploying an application in the cloud allows application owners to provision computing resources on-demand, and scale quickly to meet demand. An Infrastructure as a Service (IaaS) cloud provides low-level resources, in the form of virtual machines (VMs), to clients on a pay-per-use basis. The cloud provider (owner) can reduce costs by lowering power consumption. As a typical server can consume 50% or more of its peak power consumption when idle, this can be accomplished by consolidating client VMs onto as few hosts (servers) as possible. This, however, can lead to resource contention, and degraded VM performance. As such, VM placements must be dynamically adapted to meet changing workload demands. We refer to this process as dynamic management. Clients should also take advantage of the cloud environment by scaling their applications up and down (adding and removing VMs) to match current workload demands. This thesis proposes a number of contributions to the field of dynamic cloud management. First, we propose a method of dynamically switching between management strategies at run-time in order to achieve more than one management goal. In order to increase the scalability of dynamic management algorithms, we introduce a distributed version of our management algorithm. We then consider deploying applications which consist of multiple VMs, and automatically scale their deployment to match their workload. We present an integrated management algorithm which handles both dynamic management and application scaling. When dealing with multi-VM applications, the placement of communicating VMs within the data centre topology should be taken into account. To address this consideration, we propose a topology-aware version of our dynamic management algorithm. Finally, we describe a simulation tool, DCSim, which we have developed to help evaluate dynamic management algorithms and techniques

    Data Center-Enabled High Altitude Platforms: A Green Computing Alternative

    Full text link
    Information technology organizations and companies are seeking greener alternatives to traditional terrestrial data centers to mitigate global warming and reduce carbon emissions. Currently, terrestrial data centers consume a significant amount of energy, estimated at about 1.5% of worldwide electricity use. Furthermore, the increasing demand for data-intensive applications is expected to raise energy consumption, making it crucial to consider sustainable computing paradigms. In this study, we propose a data center-enabled High Altitude Platform (HAP) system, where a flying data center supports the operation of terrestrial data centers. We conduct a detailed analytical study to assess the energy benefits and communication requirements of this approach. Our findings demonstrate that a data center-enabled HAP is more energy-efficient than a traditional terrestrial data center, owing to the naturally low temperature in the stratosphere and the ability to harvest solar energy. Adopting a data center-HAP can save up to 14% of energy requirements while overcoming the offloading outage problem and the associated delay resulting from server distribution. Our study highlights the potential of a data center-enabled HAP system as a sustainable computing solution to meet the growing energy demands and reduce carbon footprint

    HSO: A Hybrid Swarm Optimization Algorithm for Re-Ducing Energy Consumption in the Cloudlets

    Get PDF
    Mobile Cloud Computing (MCC) is an emerging technology for the improvement of mobile service quality. MCC resources are dynamically allocated to the users who pay for the resources based on their needs. The drawback of this process is that it is prone to failure and demands a high energy input. Resource providers mainly focus on resource performance and utilization with more consideration on the constraints of service level agreement (SLA). Resource performance can be achieved through virtualization techniques which facilitates the sharing of resource providers’ information between different virtual machines. To address these issues, this study sets forth a novel algorithm (HSO) that optimized energy efficiency resource management in the cloud; the process of the proposed method involves the use of the developed cost and runtime-effective model to create a minimum energy configuration of the cloud compute nodes while guaranteeing the maintenance of all minimum performances. The cost functions will cover energy, performance and reliability concerns. With the proposed model, the performance of the Hybrid swarm algorithm was significantly increased, as observed by optimizing the number of tasks through simulation, (power consumption was reduced by 42%). The simulation studies also showed a reduction in the number of required calculations by about 20% by the inclusion of the presented algorithms compared to the traditional static approach. There was also a decrease in the node loss which allowed the optimization algorithm to achieve a minimal overhead on cloud compute resources while still saving energy significantly. Conclusively, an energy-aware optimization model which describes the required system constraints was presented in this study, and a further proposal for techniques to determine the best overall solution was also made

    A survey on architectures and energy efficiency in Data Center Networks

    Get PDF
    Data Center Networks (DCNs) are attracting growing interest from both academia and industry to keep pace with the exponential growth in cloud computing and enterprise networks. Modern DCNs are facing two main challenges of scalability and cost-effectiveness. The architecture of a DCN directly impacts on its scalability, while its cost is largely driven by its power consumption. In this paper, we conduct a detailed survey of the most recent advances and research activities in DCNs, with a special focus on the architectural evolution of DCNs and their energy efficiency. The paper provides a qualitative categorization of existing DCN architectures into switch-centric and server-centric topologies as well as their design technologies. Energy efficiency in data centers is discussed in details with survey of existing techniques in energy savings, green data centers and renewable energy approaches. Finally, we outline potential future research directions in DCNs
    • …
    corecore