69 research outputs found

    Chapter Development of Josephson voltage standards

    Get PDF
    Neurology & clinical neurophysiolog

    Development of Josephson voltage standards

    Get PDF
    Neurology & clinical neurophysiolog

    Development of Josephson Voltage Standards

    Get PDF

    The ampere and the electrical units in the quantum era

    Get PDF
    By fixing two fundamental constants from quantum mechanics, the Planck constant hh and the elementary charge ee, the revised Syst\`eme International (SI) of units endorses explicitly quantum mechanics. This evolution also highlights the importance of this theory which underpins the most accurate realization of the units. From 20 May 2019, the new definitions of the kilogram and of the ampere, based on fixed values of hh and ee respectively, will particularly impact the electrical metrology. The Josephson effect (JE) and the quantum Hall effect (QHE), used to maintain voltage and resistance standards with unprecedented reproducibility since 1990, will henceforth provide realizations of the volt and the ohm without the uncertainties inherited from the older electromechanical definitions. More broadly, the revised SI will sustain the exploitation of quantum effects to realize electrical units, to the benefit of end-users. Here, we review the state-of-the-art of these standards and discuss further applications and perspectives.Comment: 78 pages, 35 figure

    Digital instrumentation for the measurement of high spectral purity signals

    Get PDF
    Improvements on electronic technology in recent years have allowed the application of digital techniques in time and frequency metrology where low noise and high accuracy are required, yielding flexibility in systems implementation and setup. This results in measurement systems with extended capabilities, additional functionalities and ease of use. The Analog to Digital Converters (ADCs) and Digital to Analog Converters (DACs), as the system front-end, set the ultimate performance of the system in terms of noise. The noise characterization of these components will allow performing punctual considerations on the study of the implementation feasibility of new techniques and for the selection of proper components according to the application requirements. Moreover, most commercial platforms based on FPGA are clocked by quartz oscillators whose accuracy and frequency stability are not suitable for many time and frequency applications. In this case, it is possible to take advantage of the internal Phase Locked Loop (PLL) for generating the internal clock from an external frequency reference. However, the PLL phase noise could degrade the oscillator stability thereby limiting the entire system performance becoming a critical component for digital instrumentation. The information available currently in literature, describes in depth the features of these devices at frequency offsets far from the carrier. However, the information close to the carrier is a more important concern for time and frequency applications. In this frame, my PhD work is focused on understanding the limitations of the critical blocks of digital instrumentation for time and frequency metrology. The aim is to characterize the noise introduced by these blocks and in this manner to be able to predict their effects on a specific application. This is done by modeling the noise introduced by each component and by describing them in terms of general and technical parameters. The parameters of the models are identified and extracted through the corresponding method proposed accordingly to the component operation. This work was validated by characterizing a commercially available platform, Red Pitaya. This platform is an open source embedded system whose resolution and speed (14 bit, 125 MSps) are reasonably close to the state of the art of ADCs and DACs (16 bit, 350 MSps or 14 bit, 1 GSps/3GSPs) and it is potentially sufficient for the implementation of a complete instrument. The characterization results lead to the noise limitations of the platform and give a guideline for instrumentation design techniques. Based on the results obtained from the noise characterization, the implementation of a digital instrument for frequency transfer using fiber link was performed on the Red Pitaya platform. In this project, a digital implementation for the detection and compensation of the phase noise induced by the fiber is proposed. The beat note, representing the fiber length variations, is acquired directly with a high speed ADC followed by a fully digital phase detector. Based on the characterization results, it was expected a limitation in the phase noise measurement given by the PLL. First measurements of this implementation were performed using the 150 km-long buried fibers, placed in the same cables between INRiM and the Laboratoire Souterrain de Modane (LSM) on the Italy-France border. The two fibers are joined together at LSM to obtain a 300 km loop with both ends at INRiM. From these results the noise introduced by the digital system was verified in agreement with characterization results. Further test and improvements will be performed for having a finished system which is intended to be used on the Italian Link for Frequency and Time from Turin to Florence that is 642-km long and to its extension in the rest of Italy that is foreseen in the next future. Currently, a higher performance platform is under assessment by applying the tools and concepts developed along the PhD. The purpose of this project is the implementation of a state of the art phasemeter whose architecture is based on the DAC. In order to estimate the ultimate performance of the instrument, the DAC characterization is under development and preliminary measurements are also reported here

    Publications of the Jet Propulsion Laboratory, 1977

    Get PDF
    This bibliography cites 900 externally distributed technical reports released during calendar year 1977, that resulted from scientific and engineering work performed, or managed, by the Jet Propulsion Laboratory. Report topics cover 81 subject areas related in some way to the various NASA programs. The publications are indexed by: (1) author, (2) subject, and (3) publication type and number. A descriptive entry appears under the name of each author of each publication; an abstract is included with the entry for the primary (first-listed) author

    Publications of the Jet Propulsion Laboratory - July through December 1970

    Get PDF
    Bibliography of technical literature resulting from aerospace research and development at Jet Propulsion Laboratorie

    The Third International Symposium on Space Terahertz Technology: Symposium proceedings

    Get PDF
    Papers from the symposium are presented that are relevant to the generation, detection, and use of the terahertz spectral region for space astronomy and remote sensing of the Earth's upper atmosphere. The program included thirteen sessions covering a wide variety of topics including solid-state oscillators, power-combining techniques, mixers, harmonic multipliers, antennas and antenna arrays, submillimeter receivers, and measurement techniques
    • …
    corecore