883 research outputs found

    Climate Change and Critical Agrarian Studies

    Full text link
    Climate change is perhaps the greatest threat to humanity today and plays out as a cruel engine of myriad forms of injustice, violence and destruction. The effects of climate change from human-made emissions of greenhouse gases are devastating and accelerating; yet are uncertain and uneven both in terms of geography and socio-economic impacts. Emerging from the dynamics of capitalism since the industrial revolution — as well as industrialisation under state-led socialism — the consequences of climate change are especially profound for the countryside and its inhabitants. The book interrogates the narratives and strategies that frame climate change and examines the institutionalised responses in agrarian settings, highlighting what exclusions and inclusions result. It explores how different people — in relation to class and other co-constituted axes of social difference such as gender, race, ethnicity, age and occupation — are affected by climate change, as well as the climate adaptation and mitigation responses being implemented in rural areas. The book in turn explores how climate change – and the responses to it - affect processes of social differentiation, trajectories of accumulation and in turn agrarian politics. Finally, the book examines what strategies are required to confront climate change, and the underlying political-economic dynamics that cause it, reflecting on what this means for agrarian struggles across the world. The 26 chapters in this volume explore how the relationship between capitalism and climate change plays out in the rural world and, in particular, the way agrarian struggles connect with the huge challenge of climate change. Through a huge variety of case studies alongside more conceptual chapters, the book makes the often-missing connection between climate change and critical agrarian studies. The book argues that making the connection between climate and agrarian justice is crucial

    Spatial Distribution of Meso- and Microplastics in Floodplain Soilscapes: Novel Insights from Rural to Urban Floodplains in Central Germany

    Get PDF
    Plastics and especially microplastics have become an emerging threat to global ecosystems. Despite the manifold benefits and applications of the human-made material plastic, the uncontrolled release of plastics into the environment has led to a “global plastic crisis”. During the last decades it becomes apparent that this crisis leads to the presence of plastics within different environments including marine, aquatic and terrestrial systems under worldwide evidence. Furthermore, environmental plastic research was able to reveal that although plastic often ends up in oceans, the majority of plastics in the environment are transported as part of a “global plastic cycle” from the land to sea via river systems. Those river systems are not isolated in the landscape, but rather a part of an “aquatic-terrestrial interface” which also encompasses floodplains and their soilscapes. The present thesis focuses on the spatial distribution and spatio-temporal accumulation of meso- and microplastics in floodplain soilscapes following the overall objective to unravel the role of floodplain soilscapes as depositional areas of plastics within the global plastic cycle. In this context, a number of individual contributions have been published, reaching from conceptual spatial research approaches, over case studies conducted within two different floodplain soilscapes, to further opinions on the scientific benefit of plastic residues in floodplain soils. The individual contributions are linked by the major hypothesis that floodplain soilscapes act as temporal accumulation sites for plastics, driven by flood-related processes and land use over the last 70 years. To proof this major hypothesis and to overcome the lack of spatial reference in microplastics research, a geospatial sampling approach was conducted. Initial spatial data on meso- and microplastics in floodplain soils were obtained by a holistic analysis approach including the analysis of basic soil feature and metal analysis, the quantification of meso- and microplastics as well as sediment dating. Within both studied river floodplains geospatial sampling enables a detection of meso- and microplastics over the entire floodplain area and within the entire soil column reaching depths of two meters. Additionally, a frequent accumulation of plastics was found within the upper 50 cm of floodplain soils. In combination with dating of near-channel floodplain sites, it could be demonstrated that those plastic accumulations are related to recent sedimentary deposits since the 1960s. However, evidence of plastic from deeper soil layers suggests that vertical displacements in floodplain soils occur and that plastics become mobilized. Furthermore, the presence of plastics in upstream areas suggests that plastics are released to river systems and deposited via flood dynamics already in rural areas. Additionally it appears that anthropogenic impacts, such as tillage or floodplain restoration influence plastic distributions. The findings of this thesis clarify that floodplain soilscapes are part of the global plastic cycle as temporally depositional areas of plastics, but raising further questions on the mobility of plastics in soils and about the exact contribution of different environmental drivers towards plastic deposition. Finally, the present thesis indicates that the spatial reference of environmental plastic research should be rethought, in order to understand the spatial dynamics of plastics within the aquatic-terrestrial interface

    Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 5

    Get PDF
    This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modified Proportional Conflict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classifiers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identification of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classification. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classification, and hybrid techniques mixing deep learning with belief functions as well

    Exoteric effects at nanoscopic interfaces - Uncommon negative compressibility of nanoporous materials and unexpected cavitation at liquid/liquid interfaces

    Get PDF
    This PhD thesis is devoted to the investigation of some peculiar effects happening at nanoscopic interfaces between immiscible liquids or liquids and solids via molecular dynamics simulations. The study of the properties of interfaces at a nanoscopic scale is driven by the promise of many interesting technological applications, including: a novel technology for developing both eco-friendly energy storage devices in the form of mechanical batteries, as well as energy dissipation systems and, in particular, shock absorbers for the automotive market; biomedical applications related to cavitation, such as High-Intensity Focused Ultrasound (HIFU) ablation of cancer tissues and localised drug delivery, and many more. The kinetics of phenomena taking places at these scales is typically determined by large free-energy barriers separating the initial and final states, and even intermediate metastable states, when they are present. Because of such barriers, the phenomena we are interested in are "rare events", i.e. the system attempts the crossing of the barrier(s) many times before finally succeeding when an energy fluctuation makes it possible. At the same time, the magnitude of the barrier is determined by the energetics and dynamics of atoms, which forces us to model the system by taking into account both the femtosecond atomistic timescale and the timescale of the relevant phenomena, typically exceeding the former by several orders of magnitude. These longer timescales are inaccessible to standard molecular dynamics, so, in order to tackle this issue, advanced MD techniques need to be employed. The thesis is divided into two parts, corresponding to the main lines of research investigated, which are (I) the interfaces between water and complex nanoporous solids, and (II) planar solid-liquid and liquid-liquid interfaces. Anticipating some results, atomistic simulations helped uncovering the microscopic mechanism behind the (incredibly rare!) giant negative compressibility exhibited by the ZIF-8 metal organic framework (MOF) upon water intrusion. Molecular dynamics simulations also supported experimental results showing how it is possible to change the intermediate intrusion-extrusion performance of ZIF-8 by changing its grain morphology and arrangement, from a fine powder to compact monolith. Free-energy MD calculations allowed to explain the exceptional stability of surface nanobubbles in water, at undersaturated conditions, on a surprisingly wide variety of substrates, characterized by disparate hydrophobicities and gas affinities; and yet, how they catastrophically destabilize in organic solvents. Finally, through simulations, some light was shed upon the working mechanism behind the novelly discovered phenomenon of how the interface between two immiscible liquids can act as a nucleation site for cavitation

    An investigation into the environmental sustainability of the South African ornamental horticultural industry

    Get PDF
    The ornamental horticultural industry makes use of natural resources to grow plants and produce allied products to sell to consumers, landscapers, retail garden centres, hardware stores, supermarkets, and government, but at what cost to the environment? The aim of this work was to determine the current environmental awareness of growers and garden centre retailers within the ornamental horticultural industry in South Africa. Followed by an investigation into the current business practices that promote sustainable natural resource use and management as well as the obstacles and challenges that the industry faces with implementing legislation and recommendations of best practices. The study was conducted over an 18-month period and 41 growers and retail garden centres in eight of the provinces in South Africa (Appendix 10) participated in research. In each case, the study participant was asked to complete the questionnaire and where possible, a site visit was conducted and / or a semi-structured interview as well as participatory observations followed to give a comprehensive overview of the sustainability practices of the businesses. These results were then compared to international best practices and similar research conducted globally by the ornamental horticultural industry. A review of international best practices in the ornamental horticultural industry showed six environmental resources namely soil, water, fertilizers, pesticides, energy, and waste. This was seen to be common to most studies involved in the production, growth, maintenance and sales of plants and allied products. This information was used to compile a best management practice manual for South African ornamental horticulture with guidelines and practical examples for conserving and managing natural resource usage and reducing the environmental impacts of the industry. Much research has been done on the exploitation and degradation of resources due to urbanisation, industrial activities, and agricultural practices. The resources are essential to the ornamental horticultural industry but if exploited or misused, can have detrimental effects on the environmental productivity of the industry and ultimately the “Sustainable Development Goals” prescribed by the United Nations. The linking of the relevant sustainable development goals to the 9 key factors of the green economy strategized by the South African government will enable the ornamental horticultural industry to play a greater part in the green and circular economy by providing nature-based solutions to environmental problems that it is facing such as climate change and pollution.Environmental SciencesD. Phil. (Environmental Management

    Science and Innovations for Food Systems Transformation

    Get PDF
    This Open Access book compiles the findings of the Scientific Group of the United Nations Food Systems Summit 2021 and its research partners. The Scientific Group was an independent group of 28 food systems scientists from all over the world with a mandate from the Deputy Secretary-General of the United Nations. The chapters provide science- and research-based, state-of-the-art, solution-oriented knowledge and evidence to inform the transformation of contemporary food systems in order to achieve more sustainable, equitable and resilient systems
    corecore