2,567 research outputs found

    Thermal modeling and management of DRAM memory systems

    Get PDF
    With increasing speed and power density, high-performance memories, including fully buffered DIMM and DDR2 DRAM, now begin to require dynamic thermal management (DTM) as processors and hard drives did. The DTM of memories, nevertheless, is different in that it should take the processor performance and power consumption into consideration. Existing schemes have ignored that. We investigate a new approach that controls the memory thermal issues from the source generating memory activities -- the processor. It coordinates processor execution with memory thermal emergency, and therefore improves the overall system performance and power efficiency. For multi-core systems, we propose two schemes called adaptive core gating and coordinated DVFS. The first scheme activates clock gating on selected processor cores, and the second one scales down the frequency and voltage levels of processor cores when the memory is to be overheated. Results from both simulation and real system measurement show that the two schemes can successfully control the memory activities and handle thermal emergency. More importantly, they improve performance significantly under the given thermal envelope

    Power Management Techniques for Data Centers: A Survey

    Full text link
    With growing use of internet and exponential growth in amount of data to be stored and processed (known as 'big data'), the size of data centers has greatly increased. This, however, has resulted in significant increase in the power consumption of the data centers. For this reason, managing power consumption of data centers has become essential. In this paper, we highlight the need of achieving energy efficiency in data centers and survey several recent architectural techniques designed for power management of data centers. We also present a classification of these techniques based on their characteristics. This paper aims to provide insights into the techniques for improving energy efficiency of data centers and encourage the designers to invent novel solutions for managing the large power dissipation of data centers.Comment: Keywords: Data Centers, Power Management, Low-power Design, Energy Efficiency, Green Computing, DVFS, Server Consolidatio

    Energy Saving Techniques for Phase Change Memory (PCM)

    Full text link
    In recent years, the energy consumption of computing systems has increased and a large fraction of this energy is consumed in main memory. Towards this, researchers have proposed use of non-volatile memory, such as phase change memory (PCM), which has low read latency and power; and nearly zero leakage power. However, the write latency and power of PCM are very high and this, along with limited write endurance of PCM present significant challenges in enabling wide-spread adoption of PCM. To address this, several architecture-level techniques have been proposed. In this report, we review several techniques to manage power consumption of PCM. We also classify these techniques based on their characteristics to provide insights into them. The aim of this work is encourage researchers to propose even better techniques for improving energy efficiency of PCM based main memory.Comment: Survey, phase change RAM (PCRAM
    • …
    corecore