149 research outputs found

    Dynamic Thermal Analysis of a Power Amplifier

    Get PDF
    This paper presents dynamic thermal analyses of a power amplifier. All the investigations are based on the transient junction temperature measurements performed during the circuit cooling process. The presented results include the cooling curves, the structure functions, the thermal time constant distribution and the Nyquist plot of the thermal impedance. The experiments carried out demonstrated the influence of the contact resistance and the position of the entire cooling assembly on the obtained results.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    System-Level Thermal-Aware Design of 3D Multiprocessors with Inter-Tier Liquid Cooling

    Get PDF
    Rising chip temperatures and aggravated thermal reliability issues have characterized the emergence of 3D multiprocessor system-on-chips (3D-MPSoCs), necessitating the development of advanced cooling technologies. Microchannel based inter-tier liquid cooling of ICs has been envisaged as the most promising solution to this problem. A system-level thermal-aware design of electronic systems becomes imperative with the advent of these new cooling technologies, in order to preserve the reliable functioning of these ICs and effective management of the rising energy budgets of high-performance computing systems. This paper reviews the recent advances in the area of systemlevel thermal modeling and management techniques for 3D multiprocessors with advanced liquid cooling. These concepts are combined to present a vision of a green data center of the future which reduces the CO2 emissions by reusing the heat it generates

    Towards on-chip time-resolved thermal mapping with micro-/nanosensor arrays

    Get PDF
    In recent years, thin-film thermocouple (TFTC) array emerged as a versatile candidate in micro-/nanoscale local temperature sensing for its high resolution, passive working mode, and easy fabrication. However, some key issues need to be taken into consideration before real instrumentation and industrial applications of TFTC array. In this work, we will demonstrate that TFTC array can be highly scalable from micrometers to nanometers and that there are potential applications of TFTC array in integrated circuits, including time-resolvable two-dimensional thermal mapping and tracing the heat source of a device. Some potential problems and relevant solutions from a view of industrial applications will be discussed in terms of material selection, multiplexer reading, pattern designing, and cold-junction compensation. We show that the TFTC array is a powerful tool for research fields such as chip thermal management, lab-on-a-chip, and other novel electrical, optical, or thermal devices

    ANALIZA I WERYFIKACJA PARAMETRÓW TERMICZNYCH UKŁADU SCALONEGO

    Get PDF
    The paper describes thermal model of an ASIC designed and fabricated in CMOS 0.7 mm (5 V) technology. The integrated circuit consists of analogue and digital heat sources and some temperature sensors. It has been designed to carry out some thermal tests. During tests thermal resistances, capacities, time constants and convection coefficients for different packages, positions and cooling methods were extracted. The parameters of thermal model were used in simulation to compare results with real-world measurements.Artykuł opisuje model termiczny układu ASIC zaprojektowanego i sfabrykowanego w technologii CMOS 0,7 mm (5 V). Układ scalony składa się z analogowych i cyfrowych źródeł ciepła oraz czujników temperatury a został zaprojektowany w celu wykonywania testów termicznych. Podczas przeprowadzonych testów zmierzone zostały rezystancja termiczna, pojemność termiczna, termiczna stała czasowa i uogólniony współczynnik konwekcji dla różnych wariantów obudowy, jej położenia i metody chłodzenia. Parametry modelu termicznego zostały użyte w symulacjach w celu porównania wyników z rzeczywistymi pomiarami
    corecore