228 research outputs found

    Comparison of in situ and interferometric synthetic aperture radar monitoring to assess bridge thermal expansion

    Get PDF
    Asset owners responsible for the management and maintenance of bridges value the collection of data that can be processed into useful information to inform decisions about future management of structures. Installing, powering and receiving data from sensors is not always convenient or possible, but satellite monitoring may provide the ability to measure bridge movements and thus provide an indication of potential problems for asset owners to take action on. This study presents the results of satellite monitoring of the Hammersmith flyover, London, UK, using the interferometric synthetic-aperture radar (InSAR) technique. Sentinel-1 (free) and Cosmo-SkyMed (commercial) satellite radar data were processed to provide millimetre-scale measurements of the flyover and surrounding region and validated with in situ sensor measurements. A method was developed for selecting and comparing InSAR measurements with in situ displacement and temperature measurements, making use of bridge geometrical and structural modelling information. The results compare in situ sensor measurements with remote InSAR measurements and show the suitability of such measurements in measuring thermal expansion for some (but not all) bridge assets. The proposed techniques, illustrated with the case study of the Hammersmith flyover, will enable asset owners to collect regular measurements of bridge movements to complement and add value to current inspection methods and potentially give early warning to defective bridge bearings

    Limitations of persistent scatterer interferometry to measure small seasonal ground movements in an urban environment

    Get PDF
    London Clay, which underlies the majority of Greater London, has a high shrink–swell potential that can result in damage to foundations and surface infrastructure due to seasonal expansion and contraction of the clay. Currently, surface movement as a result of shrink–swell is not monitored in London, meaning that the magnitude and cyclicity of these movements is poorly understood. Persistent Scatterer Interferometric (PSI) Synthetic Aperture Radar data provide high-precision line-of-sight displacement measurements at a high point density across urban areas, offering the possibility of routine shrink–swell monitoring across whole cities. To test this, PSI data derived from TerraSAR-X (TSX) observations for the period from May 2011 to April 2017 were analysed for shrink–swell patterns across three areas of London in Hammersmith, Muswell Hill and Islington. A consistent cyclicity and amplitude was detected at all sites and the number of cycles is comparable with those identified in rainfall data. The amplitude of these cycles is smaller than anticipated, most probably because of the resisting effect of roads and pavements. The Cranfield University Leakage Assessment from Corrosivity and Shrinkage (LEACS) database was used to subdivide the PSI data and the average velocity and amplitude of each class statistically tested for significant differences between classes. The results show that it is not possible to statistically isolate possible soil shrink–swell movement in TSX PSI data in London

    Reconstruction of building façades using spaceborne multiview TomoSAR point clouds

    Get PDF
    In this paper we present an approach that allows automatic reconstruction of building façades from 4D point cloud generated from tomographic SAR processing. The approach is modular and works by extracting façade points from the point density projected onto the ground plane. Individual façades are segmented using an unsupervised clustering procedure. Surface (flat or curved) model parameters of the segmented building façades are further estimated and finally the geometric primitives such as intersection points of the adjacent façades are determined to complete the reconstruction process. The proposed approach is illustrated and validated by examples using TomoSAR point clouds generated from TerraSAR-X high resolution spotlight images

    Measuring thermal expansion using X-band Persistent Scatterer Interferometry

    Get PDF
    This paper is focused on the estimation of the thermal expansion of buildings and infrastructures using X-band Persistent Scatterer Interferometry (PSI) observations. For this purpose an extended PSI model is used, which allows separating the thermal expansion from the total observed deformation thus generating a new PSI product: the map of the thermal expansion parameter, named thermal map. The core of the paper is devoted to the exploitation of the information contained in the thermal maps: three examples are discussed in detail, which concern a viaduct, a set of industrial buildings and two skyscrapers. The thermal maps can be used to derive the thermal expansion coefficient of the observed objects and information on their static structure. In addition, the paper illustrates the distortions in the PSI deformation products that occur if the thermal expansion is not explicitly modelled. Finally, an inter-comparison exercise is described, where the thermal expansion coefficients estimated by PSI are compared with those derived by a Ku-band ground-based SAR campaign

    Monitoring the impact of groundwater pumping on infrastructure using Geographic Information System (GIS) and Persistent Scatterer Interferometry (PSI)

    Get PDF
    Transportation infrastructure is critical for the advancement of society. Bridges are vital for an efficient transportation network. Bridges across the world undergo variable deformation/displacement due to the Earth’s dynamic processes. This displacement is caused by ground motion, which occurs from many natural and anthropogenic events. Events causing deformation include temperature fluctuation, subsidence, landslides, earthquakes, water/sea level variation, subsurface resource extraction, etc. Continual deformation may cause bridge failure, putting civilians at risk, if not managed properly. Monitoring bridge displacement, large and small, provides evidence of the state and health of the bridge. Traditionally, bridge monitoring has been executed through on-site surveys. Although this method of bridge monitoring is systematic and successful, it is not the most efficient and cost-effective. Through technological advances, satellite-based Persistent Scatterer Interferometry (PSI) and Geographic Information Systems (GIS) have provided a system for analyzing ground deformation over time. This method is applied to distinguish bridges that are more at risk than others by generating models that display the displacement at various locations along each bridge. A bridge’s health and its potential risk can be estimated upon analysis of measured displacement rates. In return, this process of monitoring bridges can be done at much faster rates; saving time, money and resources. PSI data covering Oxnard, California, revealed both bridge displacement and regional ground displacement. Although each bridge maintained different patterns of displacement, many of the bridges within the Oxnard area displayed an overall downward movement matching regional subsidence trends observed in the area. Patterns in displacement-time series plots provide evidence for two types of deformation mechanisms. Long-term downward movements correlate with the relatively large regional subsidence observed using PSI in Oxnard. Thermal dilation from seasonal temperature changes may cause short-term variabilities unique to each bridge. Overall, it may be said that linking geologic, weather, and groundwater patterns with bridge displacement has shown promise for monitoring transportation infrastructure and more importantly differentiating between regional subsidence and site-specific displacements

    Monitoring the impact of groundwater pumping on infrastructure using Geographic Information System (GIS) and Persistent Scatterer Interferometry (PSI)

    Get PDF
    Transportation infrastructure is critical for the advancement of society. Bridges are vital for an efficient transportation network. Bridges across the world undergo variable deformation/displacement due to the Earth’s dynamic processes. This displacement is caused by ground motion, which occurs from many natural and anthropogenic events. Events causing deformation include temperature fluctuation, subsidence, landslides, earthquakes, water/sea level variation, subsurface resource extraction, etc. Continual deformation may cause bridge failure, putting civilians at risk, if not managed properly. Monitoring bridge displacement, large and small, provides evidence of the state and health of the bridge. Traditionally, bridge monitoring has been executed through on-site surveys. Although this method of bridge monitoring is systematic and successful, it is not the most efficient and cost-effective. Through technological advances, satellite-based Persistent Scatterer Interferometry (PSI) and Geographic Information Systems (GIS) have provided a system for analyzing ground deformation over time. This method is applied to distinguish bridges that are more at risk than others by generating models that display the displacement at various locations along each bridge. A bridge’s health and its potential risk can be estimated upon analysis of measured displacement rates. In return, this process of monitoring bridges can be done at much faster rates; saving time, money and resources. PSI data covering Oxnard, California, revealed both bridge displacement and regional ground displacement. Although each bridge maintained different patterns of displacement, many of the bridges within the Oxnard area displayed an overall downward movement matching regional subsidence trends observed in the area. Patterns in displacement-time series plots provide evidence for two types of deformation mechanisms. Long-term downward movements correlate with the relatively large regional subsidence observed using PSI in Oxnard. Thermal dilation from seasonal temperature changes may cause short-term variabilities unique to each bridge. Overall, it may be said that linking geologic, weather, and groundwater patterns with bridge displacement has shown promise for monitoring transportation infrastructure and more importantly differentiating between regional subsidence and site-specific displacements
    • …
    corecore