15 research outputs found

    Nonlinear buckling of CNT-reinforced composite toroidal shell segment surrounded by an elastic medium and subjected to uniform external pressure

    Get PDF
    Buckling and postbuckling behaviors of Toroidal Shell Segment (TSS) reinforced by single-walled carbon nanotubes (SWCNT), surrounded by an elastic medium and subjected to uniform external pressure are investigated in this paper. Carbon nanotubes (CNTs) are reinforced into matrix phase by uniform distribution (UD) or functionally graded (FG) distribution along the thickness direction. Effective properties of carbon nanotube reinforced composite (CNTRC) are estimated by an extended rule of mixture through a micromechanical model. Governing equations for TSSs are based on the classical thin shell theory taking into account geometrical nonlinearity and surrounding elastic medium. Three-term solution of deflection and stress function are assumed to satisfy simply supported boundary condition, and Galerkin method is applied to obtain nonlinear load-deflection relation from which buckling loads and postbuckling equilibrium paths are determined. The effects of CNT volume fraction, distribution types, geometrical ratios and elastic foundation on the buckling and postbuckling behaviors of CNTRC TSSs are analyzed and discussed

    Thermoelastic Vibration and Stability of Temperature-Dependent Carbon Nanotube-Reinforced Composite Plates

    Get PDF
    The present article investigates the thermoelastic vibration and stability characteristics of carbon nanotube-reinforced composite (CNTRC) plates in thermal environment. The CNTRC plates are made up of four different types of uniaxially aligned reinforcements. The single-walled carbon nanotubes (SWCNTs) reinforcement is either uniformly distributed (UD) or functionally graded (FG) according to linear functions of the thickness direction. The material properties, of both matrix and CNTs, are temperature-dependent and the effective elastic coefficients are evaluated by using a micromechanical model. The governing equations (GEs) are derived in their weak-form by using Hamilton’s Principle in conjunction with the method of the power series expansion of the displacement components. The Ritz method, based on highly stable trigonometric trial functions, is used as solution technique. Convergence and stability of the proposed formulation have been thoroughly analyzed by assessing many higher-order plate models. Thermal and mechanical pre-stresses are taken into account. Moreover, the effect of significant parameters such as length-to-thickness ratio, volume fraction, aspect ratio, loading-type, CNTs distribution as well as boundary conditions is discussed

    Carbon Nano Tubes (CNTS) for the development of high-performance and smart composites.

    Get PDF
    Los nanotubos de carbono han atraído una enorme atención en los últimos años debido a sus propiedades multifuncionales sobresalientes. Un número cada vez mayor de trabajos de investigación de primera línea centran su interés en la búsqueda de aplicaciones prácticas que den uso de las notables propiedades de los nanotubos de carbono, incluyendo una elevada resistencia mecánica, propiedades piezorestivas, alta conductividad eléctrica, ligereza, excelente estabilidad química y térmica. En concreto, los estudios más recientes plantean dos grandes ramas de aplicación: fabricación de estructuras aligeradas de alta resistencia, y desarrollo de estructuras inteligentes. Con respecto a la primera línea de aplicación, el desarrollo de materiales compuestos ligeros de alta resistencia conecta con la creciente tendencia de la ingeniería estructural a incorporar materiales compuestos innovadores. Ejemplos recientes como el avión comercial Boeing 787, en el que la mitad del peso fue diseñado con materiales compuestos, predicen un futuro auspicioso para los nanotubos de carbono en la ingeniería aeronáutica. Sin embargo, aún resulta más interesante el comportamiento piezorresistivo de los compuestos reforzados con nanotubos de carbono, ya que posibilita la creación de estructuras que no sólo presentan altas capacidades portantes y reducido peso específico, sino que también ofrecen capacidades de auto-detección de deformaciones. Cuando el material se ve sometido a una deformación externa, en virtud de dicha propiedad piezoresistiva, la conductividad eléctrica varía de modo que es posible correlacionar su respuesta eléctrica con el campo deformacional aplicado. Estas propiedades multifuncionales entroncan con el nuevo paradigma de la Vigilancia de la Salud Estructural el cual aboga por el uso de materiales/estructuras inteligentes para resolver el problema de escalabilidad. En este contexto, la estructura o parte de ella presenta capacidades de auto-detección de tal manera que el mantenimiento basado en la condición puede llevarse a cabo sin necesidad de incluir sensores externos. En ambas líneas, la mayoría de las investigaciones han centrado el estudio en la experimentación, siendo mucho menor el número de trabajos que plantean modelos teóricos capaces de simular las propiedades mecánicas, eléctricas y electromecánicas de estos compuestos. Desde un punto de vista mecánico, existen estudios experimentales que informan acerca de los efectos perjudiciales sobre la respuesta macroscópica de aspectos micromecánicos tales como la tendencia a formar aglomerados, así como la curvatura de los nanotubos de carbono. Es por ello esencial desarrollar modelos teóricos que incorporen estos efectos y asistan al diseño de elementos estructurales reforzados con nanotubos de carbono. Respecto al estudio de las propiedades de conductividad y piezoresistividad, es esencial desarrollar formulaciones teóricas capaces de abordar la optimización de las propiedades de autodetección de deformaciones. Asimismo, es crucial comprender los diferentes mecanismos físicos que rigen la conductividad eléctrica de estos compuestos, de modo que sea posible incorporar su efecto diferencial dentro de un marco teórico. Por último, también es fundamental avanzar hacia el dominio del tiempo con el fin de desarrollar aplicaciones de vigilancia de la salud estructural basada en vibraciones. Con todo ello, los esfuerzos de esta tesis se han centrado en el modelado de las propiedades mecánicas, conductivas y electromecánicas de los compuestos reforzados con nanotubos de carbono para el desarrollo de estructuras inteligentes y de alta resistencia. Estas dos aplicaciones, a saber, compuestos de alta resistencia e inteligentes, han sido enmarcadas en el ámbito de los materiales poliméricos y de cemento, respectivamente. La razón de esta distinción se debe a la presunción de que los compuestos poliméricos pueden encontrar aplicaciones directas como paneles de fuselaje para estructuras de aeronaves, así como refuerzos mecánicos sobre estructuras pre-existentes. En cuanto al uso de nanotubos de carbono como inclusiones multifuncionales para compuestos inteligentes, tanto los materiales poliméricos como los de base cemento ofrecen una amplia gama de aplicaciones potenciales. Sin embargo, la similitud entre los compuestos de base cemento y el hormigón estructural convencional sugiere la idea de desarrollar sensores embebidos que ofrezcan una monitorización continua integrada sin comprometer a priori la durabilidad de la estructura huésped. Tanto las propiedades mecánicas como las conductivas han sido estudiadas mediante métodos de homogeneización de campo medio. Aspectos micromecánicos tales como la relación de aspecto, el contenido, la distribución de la orientación, la ondulación o la aglomeración de los nanotubos se han estudiado en detalle e incorporado al análisis de diferentes elementos estructurales. De manera similar, se han estudiado las propiedades de conductividad eléctrica y auto-detección de deformaciones bajo cargas cuasi-estáticas mediante modelos mixtos de homogenización micromecánica de Mori-Tanaka. Los principales mecanismos que gobiernan las propiedades de transporte eléctrico de estos compuestos, a saber, los efectos de túnel cuántico y la formación de canales conductores, se han incorporado por separado en las simulaciones a través de la teoría de percolación de fibras conductoras. Los resultados teóricos han sido validados con éxito mediante experimentos en condiciones de laboratorio. Finalmente, se ha desarrollado un nuevo circuito equivalente piezorresistivo/piezoeléctrico para el modelado electromecánico de materiales de base cemento reforzado con nanotubos de carbono en el dominio del tiempo. Con los experimentos como base de validación, se ha demostrado que el enfoque propuesto proporciona resultados precisos y ofrece un marco teórico apto para aplicaciones de procesamiento de señales y monitorización de la salud estructural. Se espera que el trabajo desarrollado en esta tesis pueda proporcionar herramientas valiosas que permitan profundizar en la comprensión de los principales aspectos físicos que controlan las propiedades mecánicas, eléctricas y electromecánicas de los compuestos reforzados con nanotubos de carbono. Además, se espera que los resultados presentados en esta tesis impulsen el desarrollo de materiales compuestos auto-sensibles embebidos para aplicaciones de vigilancia de la salud estructural.Carbon nanotubes have drawn enormous attention in recent years due to their outstanding multifunctional properties. A constantly growing number of works at the front line of research pursue potential applications of their remarkable physical properties, including elevated load-bearing capacity, piezoresistive properties, high electrical conductivity, lightness, and excellent chemical and thermal stability. In particular, most recent works contemplate two different application branches: manufacture of light-weight high-strength structures, and development of smart structures. With regard to the first line of application, the development of high-strength lightweight composites connects with the growing tendency of structural engineering to incorporate advanced composite materials. Recent noticeable examples such as the commercial aircraft Boeing 787, in which half of the total weight was designed with composite materials, predict an auspicious future for carbon nanotubes in aircraft structures. Nonetheless, what is even more interesting is the piezoresistive behavior of carbon nanotube-reinforced composites, which allows us to create structures that are not only high-strength and lightweight but also strain-sensitive. When the composites are subjected to external strain fields, in virtue of such piezoresistive properties, the overall electrical conductivity varies in such a way that it is possible to correlate the electrical response with the deformational state of the material. These multifunctional properties are in line with the new paradigm of Structural Health Monitoring which advocates the use of smart materials/structures to solve the scalability issue. In this context, the structure or part of it presents self-sensing capabilities in such a way that the condition-based maintenance can be conducted without necessitating external off-the-shelf sensors. In both lines, most investigations have focused on experimentation. Conversely, the number of theoretical models capable of simulating the mechanical, electrical, and electromechanical properties of these composites is still scarce. From a mechanical point of view, experiments have reported about the detrimental effects of micromechanical aspects such as agglomeration of fillers and curviness on the macroscopic properties. Hence, it is essential to develop theoretical models that allow us to include these effects and assist the design of composite structural elements. With regard to the study of the conductivity and piezoresistivity of carbon nanotube-reinforced composites, it is essential to develop theoretical formulations capable of tackling the optimization of their strain sensitivity. In addition, it is crucial to understand the different physical mechanisms that govern the electrical conductivity of these composites and include them separately in the theoretical framework. Finally, it is also fundamental to move towards the time domain in order to develop applications for vibration-based structural health monitoring. Overall, all the efforts of this thesis have been put into the modeling of the mechanical, conductive and electromechanical properties of carbon nanotube-reinforced composites for the development of high-strength and smart structures. These two applications, namely high-strength and smart composites, have been framed in the realm of polymeric and cement-based materials, respectively. The reason for this distinction is the idea that polymer composites with high load-bearing capacity can find direct applications as fuselage panels for aircraft structures, as well as mechanical reinforcements attached to pre-existing structures. With regard to the use of carbon nanotubes as fillers for smart composites, both polymer and cement-based materials offer an enormous range of potential applications. Nonetheless, the similarity between cement-based composites and regular structural concrete suggests the idea of developing continuous embedded monitoring systems without compromising the durability of the hosting structure a priori. Both mechanical and conductive properties have been studied by means of mean-field homogenization methods. Micromechanical aspects such as filler aspect ratio, content, orientation distribution, waviness or agglomeration have been studied in detail and incorporated to the analysis of different structural elements. Similarly, the electrical conductivity and strain-sensing properties of these composites under quasi-static loadings have been studied by means of mixed Mori-Tanaka micromechanics models. The main mechanisms that underlie the electrical conduction of these composites, namely quantum tunneling effects and conductive networks, have been distinguished by a percolative-type behavior. The theoretical results have been successfully validated by means of experiments under laboratory conditions. Finally, a novel piezoresistive/piezoelectric equivalent lumped circuit has been developed for the electromechanical modeling of carbon nanotube-reinforced cement-based materials in the time domain. With experiments as validating basis, the proposed approach has been shown to provide accurate results and offers a theoretical framework readily applicable to signal processing applications and structural health monitoring. The work developed in this thesis is envisaged to provide valuable tools to further the understanding of the main physical aspects that control the mechanical, electrical and electromechanical properties of composites doped with carbon nanotubes. Furthermore, it is expected to boost the development of embedded self-sensing carbon nanotube-reinforced composites for structural health monitoring applications.Premio Extraordinario de Doctorado U

    Isogeometric analysis for smart plate structures

    Get PDF

    The Effect of Volume Fraction of Single-Walled Carbon Nanotubes on Natural Frequencies of Polymer Composite Cone-Shaped Shell Made from Poly(Methyl Methacrylate)

    Get PDF
    In this paper, the effect of volume fraction of single-walled carbon nanotubes on natural frequencies of polymer composite cone-shaped shells made from Poly(Methyl Methacrylate) (PMMA) is studied. In order to determine the characterization of materials reinforced with nanoparticles, the molecular dynamics and mixture rule has been used. The motion equations of composite shell based on the classical thin shells theory using Hamilton’s principle are obtained. Then, using the Ritz method, approximate analytical solution of the natural frequency is presented. Results indicate that the nanotubes have a noticeable effect on the natural frequencies

    Nonlinear Dynamic Behaviour of Solar Cells with Advanced Materials

    Full text link
    The advanced solar structure (perovskite solar cell) (PSC) has fascinated both the scientific community and contemporary industry due to the high efficiency, low fabrication cost, abundant raw material, and distinguished electro-optic properties. Whereas, along the journey towards real-life implementation of the novel PSC, the mechanical performance and dynamic behaviour, as well as nonlinear stability of the structure are still not examined. Such investigation is tightly pertinent to device operating capacity and safety, and represents a key issue for commercial production. In addition, feasible reinforcement through advanced composite materials for the PSC is still an open problem, which is crucial for guaranteeing product serviceability. Moreover, the manifold practical influences within PSC’s working conditions are yet not fully explored, which can exert a critical impact on structural performance and dynamic attributes. Hence in this dissertation, an analytical framework is developed for analysing the mechanical capacity and nonlinear dynamic behaviour of the advanced solar panel and novel composite structures subjected to various realistic impulses. The innovative graphene platelets reinforced functionally graded porous stiffeners and oblique stiffeners have been involved to enhance the composite stiffness and stability. Moreover, different laminate plate theories have been incorporated to effectively handle thick to ultra-thin structures. The nonlinear motion equations are derived based on the Galerkin method. Then, the fourth-order Runge-Kutta method is leveraged to capture the mechanical performance and nonlinear response. Through comparing with results from finite element software and established benchmarks, the accuracy, effectiveness, and applicability of the developed framework have been verified. In addition, extensive practical effects, such as the damping, temperature alteration, wind load, elastic foundations, initial imperfection, active layer, blast impact, and multiple impulse loadings, on mechanical attributes and structure response under disparate support conditions have been identified systematically. By determining the optimal parameters of novel composite stiffeners, the dynamic performance and impact resistance of the PSC have been intensified. The proposed study will be beneficial to the modern design and practical deployment of energy-harvesting devices with improved mechanical capability, stability, and safety

    A Framework for Size-dependent Structural Analysis of Smart Micro/nanoplates

    Full text link
    This age has witnessed a proliferation of technological advancements that affected all facets of civilisation. Driven by the joint force of the evolution of sophisticated design tools, tailored material characteristics, and robust mechanics-based analyses, smart composite materials are widely used in high-performance engineering applications. Meanwhile, there is a growing interest in micro/nanoscopic structures in academia and industry due to the overwhelming trend toward portability, miniaturisation and integration in engineering. Therefore, the theoretical, computational, and experimental research communities have developed various effective methodologies to understand the structural behaviour of smart small-scale structures comprehensively. This dissertation introduces two size-dependent continuum theories, modified strain gradient and nonlocal strain gradient theories, to build the analytical framework for exploring application-driven micro/nanoplates made of smart composite materials. As examples of promising candidates for power supply and nano/microelectromechanical systems, organic solar cells and thermo-magneto-elastic sandwich nanoplates are studied. Size-dependent continuum models combined with various shear deformation plate theories are adopted to derive the governing equations. The size-sensitive static and dynamic mechanical responses, including bending, buckling, and free vibration behaviours of these ultra-fine-size structures, are predicted by capturing the size effect with material length scale or nonlocal parameters. The numerical results underlying size-dependent theories pose a new insight into the structural analysis of functional micro/nanoscopic plate-like structures. Some typical size-involving mechanical characteristics are revealed by comparing the present estimation with those from size-independent models. Moreover, the simulation outcomes thoroughly investigate several practical factors, such as boundary conditions, geometric configuration, and elastic foundation modelling parameters. In this endeavour, taking advantage of the computational efficiency and accessible operation of nonclassical continuum-based theories, the current analytical framework is suitable for exploring the size-tendency of the smart micro-/nanosized structures. The present work may serve as a benchmark for following numerical simulations and as a guide for evolving new engineering tools for modelling relevant responses by designers and manufacturers
    corecore