5,272 research outputs found

    First-principles study of phonon linewidths in noble metals

    Get PDF
    Phonon lifetimes in Cu, Ag, and Au at low and high temperatures were calculated along high symmetry directions using density functional theory combined with second-order perturbation theory. Both harmonic and third-order anharmonic force constants were computed using a supercell small displacement method, and the two-phonon densities of states were calculated for all three-phonon processes consistent with the kinematics of energy and momentum conservation. A nonrigorous Grüneisen model with no q-dependence of the anharmonic coupling constants offers a simple separation of the potential and the kinematics, and proved semiquantitative for Cu, Ag, and Au. A rule is reported for finding the most anharmonic phonon mode in fcc metals

    Phonons and related properties of extended systems from density-functional perturbation theory

    Full text link
    This article reviews the current status of lattice-dynamical calculations in crystals, using density-functional perturbation theory, with emphasis on the plane-wave pseudo-potential method. Several specialized topics are treated, including the implementation for metals, the calculation of the response to macroscopic electric fields and their relevance to long wave-length vibrations in polar materials, the response to strain deformations, and higher-order responses. The success of this methodology is demonstrated with a number of applications existing in the literature.Comment: 52 pages, 14 figures, submitted to Review of Modern Physic

    Force-matched embedded-atom method potential for niobium

    Get PDF
    Large-scale simulations of plastic deformation and phase transformations in alloys require reliable classical interatomic potentials. We construct an embedded-atom method potential for niobium as the first step in alloy potential development. Optimization of the potential parameters to a well-converged set of density-functional theory (DFT) forces, energies, and stresses produces a reliable and transferable potential for molecular dynamics simulations. The potential accurately describes properties related to the fitting data, and also produces excellent results for quantities outside the fitting range. Structural and elastic properties, defect energetics, and thermal behavior compare well with DFT results and experimental data, e.g., DFT surface energies are reproduced with less than 4% error, generalized stacking-fault energies differ from DFT values by less than 15%, and the melting temperature is within 2% of the experimental value.Comment: 17 pages, 13 figures, 7 table

    Neutron scattering measurements of phonons in nickel at elevated temperatures

    Get PDF
    Measurements of elastic and inelastic neutron scatterings from elemental nickel were made at 10, 300, 575, 875, and 1275 K. The phonon densities of states (DOSs) were calculated from the inelastic scattering and were fit with Born–von Kármán models of the lattice dynamics. With ancillary data on thermal expansion and elastic moduli, we found a small, negative anharmonic contribution to the phonon entropy at high temperature. We used this to place bounds on the magnetic entropy of nickel. A significant broadening of the phonon DOS at elevated temperatures, another indication of anharmonicity, was also measured and quantified

    Phonons in aluminum at high temperatures studied by inelastic neutron scattering

    Get PDF
    Inelastic neutron scattering measurements on aluminum metal were performed at temperatures of 10, 150, 300, 525, and 775 K using direct-geometry Fermi chopper spectrometers. The temperature dependent phonon density of states (DOS) was determined from the scattering, and was used to fit Born–von Kármán models of lattice dynamics. The shifts in the phonon frequencies with increasing temperature were largely explained by the softening of the longitudinal force constants out to third nearest neighbors. A significant broadening of the phonon spectra at high temperatures was also measured. The phonon DOS was used to determine the vibrational contributions to the entropy of aluminum as a function of temperature. All other contributions to the entropy of aluminum were calculated or assessed, and the total entropy was in excellent agreement with the NIST-JANAF compilation [M. W. Chase, J. Phys. Chem. Ref. Data Monogr. 9, 59 (1998)]. Anharmonic effects were attributed to phonon-phonon interactions. The quasiharmonic approximation was generally successful, but its weaknesses are discussed

    Temperature dependence in interatomic potentials and an improved potential for Ti

    Get PDF
    The process of deriving an interatomic potentials represents an attempt to integrate out the electronic degrees of freedom from the full quantum description of a condensed matter system. In practice it is the derivatives of the interatomic potentials which are used in molecular dynamics, as a model for the forces on a system. These forces should be the derivative of the free energy of the electronic system, which includes contributions from the entropy of the electronic states. This free energy is weakly temperature dependent, and although this can be safely neglected in many cases there are some systems where the electronic entropy plays a significant role. Here a method is proposed to incorporate electronic entropy in the Sommerfeld approximation into empirical potentials. The method is applied as a correction to an existing potential for titanium. Thermal properties of the new model are calculated, and a simple method for fixing the melting point and solid-solid phase transition temperature for existing models fitted to zero temperature data is presented.Comment: CCP 201
    corecore