32 research outputs found

    Indices of fixed points not accumulated by periodic points

    Full text link
    We prove that for every integer sequence II satisfying Dold relations there exists a map f:Rd→Rdf : \mathbb{R}^d \to \mathbb{R}^d, d≥2d \ge 2, such that Per(f)=Fix(f)={o}\mathrm{Per(f)} = \mathrm{Fix(f)} = \{o\}, where oo denotes the origin, and (i(fn,o))n=I(i(f^n, o))_n = I.Comment: 11 pages, 2 figures. Final version to appear in Topol. Methods Nonlinear Ana

    Circular critical exponents for Thue-Morse factors

    Full text link
    We prove various results about the largest exponent of a repetition in a factor of the Thue-Morse word, when that factor is considered as a circular word. Our results confirm and generalize previous results of Fitzpatrick and Aberkane & Currie

    Repetitions in partial words

    Get PDF
    El objeto de esta tesis está representado por las repeticiones de palabras parciales, palabras que, además de las letras regulares, pueden tener un número de símbolos desconocidos,llamados símbolos "agujeros" o "no sé qué". Más concretamente, se presenta y se resuelve una extensión de la noción de repetición establecida por Axel Thue. Investigamos las palabras parciales con un número infinito de agujeros que cumplen estas propiedades y, también las palabras parciales que conservan las propiedades después de la inserción de un número arbitrario de agujeros, posiblemente infinito. Luego, hacemos un recuento del número máximo de 2-repeticiones distintas compatibles con los factores de una palabra parcial. Se demuestra que el problema en el caso general es difícil, y estudiamos el problema en el caso de un agujero. Al final, se estudian algunas propiedades de las palabras parciales sin fronteras y primitivas (palabras sin repeticiones) y se da una caracterización del lenguaje de palabras parciales con una factorización crítica

    Critical Exponents and Stabilizers of Infinite Words

    Get PDF
    This thesis concerns infinite words over finite alphabets. It contributes to two topics in this area: critical exponents and stabilizers. Let w be a right-infinite word defined over a finite alphabet. The critical exponent of w is the supremum of the set of exponents r such that w contains an r-power as a subword. Most of the thesis (Chapters 3 through 7) is devoted to critical exponents. Chapter 3 is a survey of previous research on critical exponents and repetitions in morphic words. In Chapter 4 we prove that every real number greater than 1 is the critical exponent of some right-infinite word over some finite alphabet. Our proof is constructive. In Chapter 5 we characterize critical exponents of pure morphic words generated by uniform binary morphisms. We also give an explicit formula to compute these critical exponents, based on a well-defined prefix of the infinite word. In Chapter 6 we generalize our results to pure morphic words generated by non-erasing morphisms over any finite alphabet. We prove that critical exponents of such words are algebraic, of a degree bounded by the alphabet size. Under certain conditions, our proof implies an algorithm for computing the critical exponent. We demonstrate our method by computing the critical exponent of some families of infinite words. In particular, in Chapter 7 we compute the critical exponent of the Arshon word of order n for n ≥ 3. The stabilizer of an infinite word w defined over a finite alphabet Σ is the set of morphisms f: Σ*→Σ* that fix w. In Chapter 8 we study various problems related to stabilizers and their generators. We show that over a binary alphabet, there exist stabilizers with at least n generators for all n. Over a ternary alphabet, the monoid of morphisms generating a given infinite word by iteration can be infinitely generated, even when the word is generated by iterating an invertible primitive morphism. Stabilizers of strict epistandard words are cyclic when non-trivial, while stabilizers of ultimately strict epistandard words are always non-trivial. For this latter family of words, we give a characterization of stabilizer elements. We conclude with a list of open problems, including a new problem that has not been addressed yet: the D0L repetition threshold

    Representations of Circular Words

    Full text link
    In this article we give two different ways of representations of circular words. Representations with tuples are intended as a compact notation, while representations with trees give a way to easily process all conjugates of a word. The latter form can also be used as a graphical representation of periodic properties of finite (in some cases, infinite) words. We also define iterative representations which can be seen as an encoding utilizing the flexible properties of circular words. Every word over the two letter alphabet can be constructed starting from ab by applying the fractional power and the cyclic shift operators one after the other, iteratively.Comment: In Proceedings AFL 2014, arXiv:1405.527

    Overlap-Free Words and Generalizations

    Get PDF
    The study of combinatorics on words dates back at least to the beginning of the 20th century and the work of Axel Thue. Thue was the first to give an example of an infinite word over a three letter alphabet that contains no squares (identical adjacent blocks) xx. This result was eventually used to solve some longstanding open problems in algebra and has remarkable connections to other areas of mathematics and computer science as well. This thesis will consider several different generalizations of Thue's work. In particular we shall study the properties of infinite words avoiding various types of repetitions. In Chapter 1 we introduce the theory of combinatorics on words. We present the basic definitions and give an historical survey of the area. In Chapter 2 we consider the work of Thue in more detail. We present various well-known properties of the Thue-Morse word and give some generalizations. We examine Fife's characterization of the infinite overlap-free words and give a simpler proof of this result. We also present some applications to transcendental number theory, generalizing a classical result of Mahler. In Chapter 3 we generalize a result of Seebold by showing that the only infinite 7/3-power-free binary words that can be obtained by iterating a morphism are the Thue-Morse word and its complement. In Chapter 4 we continue our study of overlap-free and 7/3-power-free words. We discuss the squares that can appear as subwords of these words. We also show that it is possible to construct infinite 7/3-power-free binary words containing infinitely many overlaps. In Chapter 5 we consider certain questions of language theory. In particular, we examine the context-freeness of the set of words containing overlaps. We show that over a three-letter alphabet, this set is not context-free, and over a two-letter alphabet, we show that this set cannot be unambiguously context-free. In Chapter 6 we construct infinite words over a four-letter alphabet that avoid squares in any arithmetic progression of odd difference. Our constructions are based on properties of the paperfolding words. We use these infinite words to construct non-repetitive tilings of the integer lattice. In Chapter 7 we consider approximate squares rather than squares. We give constructions of infinite words that avoid such approximate squares. In Chapter 8 we conclude the work and present some open problems

    On the entropy and letter frequencies of ternary square-free words

    Get PDF
    We enumerate all ternary length-1 square-free words, which are words avoiding squares of words up to length 1, for 1<=24. We analyse the singular behaviour of the corresponding generating functions. This leads to new upper entropy bounds for ternary square-free words. We then consider ternary square-free words with fixed letter densities, thereby proving exponential growth for certain ensembles with various letter densities. We derive consequences for the free energy and entropy of ternary square-free words

    Periodicity of circular words

    Get PDF
    corecore