691 research outputs found

    On non-traceable, non-hypotraceable, arachnoid graphs

    Get PDF
    Motivated by questions concerning optical networks, in 2003 Gargano, Hammar, Hell, Stacho, and Vaccaro defined the notions of spanning spiders and arachnoid graphs. A spider is a tree with at most one branch (vertex of degree at least 3). The spider is centred at the branch vertex (if there is any,otherwise it is centred at any of the vertices). A graph is arachnoid if it has a spanning spider centred at any of its vertices. Traceable graphs are obviously arachnoid, and Gargano et al. observed that hypotraceable graphs (non-traceable graphs with the property that all vertex-deleted subgraphs are traceable) are also easily seen to be arachnoid. However, they did not find any other arachnoid graphs, and asked the question whether they exist. The main goal of this paper is to answer this question in the affirmative, moreover, we show that for any prescribed graph H, there exists a non-traceable, non-hypotraceable, arachnoid graph that contains H as an induced subgraph

    Spanning trees with few branch vertices

    Get PDF
    A branch vertex in a tree is a vertex of degree at least three. We prove that, for all s≥1s\geq 1, every connected graph on nn vertices with minimum degree at least (1s+3+o(1))n(\frac{1}{s+3}+o(1))n contains a spanning tree having at most ss branch vertices. Asymptotically, this is best possible and solves, in less general form, a problem of Flandrin, Kaiser, Ku\u{z}el, Li and Ryj\'a\u{c}ek, which was originally motivated by an optimization problem in the design of optical networks.Comment: 20 pages, 2 figures, to appear in SIAM J. of Discrete Mat

    TiFi: Taxonomy Induction for Fictional Domains [Extended version]

    No full text
    Taxonomies are important building blocks of structured knowledge bases, and their construction from text sources and Wikipedia has received much attention. In this paper we focus on the construction of taxonomies for fictional domains, using noisy category systems from fan wikis or text extraction as input. Such fictional domains are archetypes of entity universes that are poorly covered by Wikipedia, such as also enterprise-specific knowledge bases or highly specialized verticals. Our fiction-targeted approach, called TiFi, consists of three phases: (i) category cleaning, by identifying candidate categories that truly represent classes in the domain of interest, (ii) edge cleaning, by selecting subcategory relationships that correspond to class subsumption, and (iii) top-level construction, by mapping classes onto a subset of high-level WordNet categories. A comprehensive evaluation shows that TiFi is able to construct taxonomies for a diverse range of fictional domains such as Lord of the Rings, The Simpsons or Greek Mythology with very high precision and that it outperforms state-of-the-art baselines for taxonomy induction by a substantial margin

    An FPT Algorithm for Spanning Trees with Few Branch Vertices Parameterized by Modular-Width

    Get PDF
    The minimum branch vertices spanning tree problem consists in finding a spanning tree T of an input graph G having the minimum number of branch vertices, that is, vertices of degree at least three in T. This NP-hard problem has been widely studied in the literature and has many important applications in network design and optimization. Algorithmic and combinatorial aspects of the problem have been extensively studied and its fixed parameter tractability has been recently considered. In this paper we focus on modular-width and show that the problem of finding a spanning tree with the minimum number of branch vertices is FPT with respect to this parameter

    Physiological Ecology of Overwintering and Cold-Adapted Arthropods

    Get PDF
    Given their abundance and diversity, arthropods are an excellent system to investigate biological responses to winter. Winter conditions are being majorly impacted by climate change, and therefore understanding the overwintering biology of arthropods is critical for predicting ecological responses to climate change. In Chapters 2 and 3, I investigate the winter biology of a winter-active wolf spider. I show that winter-active spiders can take advantage of periodic prey resources and grown in the winter, which may allow them to get a jumpstart on spring reproduction. I also investigate spiders’ ability to track changes in their environment by quantifying low temperature thresholds associated with simulated winter warming and show that winter warming may make spiders more susceptible to extreme cold events. In Chapter 4, I address ecological factors that influence the distribution of an Antarctic insect, showing that population density is primarily regulated by the availability of suitable habitat. Finally, I designed a laboratory module for an introductory science course that incorporates principles of phenotypic plasticity and climate change to illustrate biological responses to climate change. Taken together, these studies improve our understanding of the overwintering physiology and ecology of arthropods, with wide applications including biological control, spatial ecology, and pedagogy
    • …
    corecore