2,444 research outputs found

    Tactile Interactions with a Humanoid Robot : Novel Play Scenario Implementations with Children with Autism

    Get PDF
    Acknowledgments: This work has been partially supported by the European Commission under contract number FP7-231500-ROBOSKIN. Open Access: This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.The work presented in this paper was part of our investigation in the ROBOSKIN project. The project has developed new robot capabilities based on the tactile feedback provided by novel robotic skin, with the aim to provide cognitive mechanisms to improve human-robot interaction capabilities. This article presents two novel tactile play scenarios developed for robot-assisted play for children with autism. The play scenarios were developed against specific educational and therapeutic objectives that were discussed with teachers and therapists. These objectives were classified with reference to the ICF-CY, the International Classification of Functioning – version for Children and Youth. The article presents a detailed description of the play scenarios, and case study examples of their implementation in HRI studies with children with autism and the humanoid robot KASPAR.Peer reviewedFinal Published versio

    Therapeutic and educational objectives in robot assisted play for children with autism

    Get PDF
    “This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.” DOI: 10.1109/ROMAN.2009.5326251This article is a methodological paper that describes the therapeutic and educational objectives that were identified during the design process of a robot aimed at robot assisted play. The work described in this paper is part of the IROMEC project (Interactive Robotic Social Mediators as Companions) that recognizes the important role of play in child development and targets children who are prevented from or inhibited in playing. The project investigates the role of an interactive, autonomous robotic toy in therapy and education for children with special needs. This paper specifically addresses the therapeutic and educational objectives related to children with autism. In recent years, robots have already been used to teach basic social interaction skills to children with autism. The added value of the IROMEC robot is that play scenarios have been developed taking children's specific strengths and needs into consideration and covering a wide range of objectives in children's development areas (sensory, communicational and interaction, motor, cognitive and social and emotional). The paper describes children's developmental areas and illustrates how different experiences and interactions with the IROMEC robot are designed to target objectives in these areas

    Therapeutic and educational objectives in robot assisted play for children with autism

    Get PDF
    “This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.” DOI: 10.1109/ROMAN.2009.5326251This article is a methodological paper that describes the therapeutic and educational objectives that were identified during the design process of a robot aimed at robot assisted play. The work described in this paper is part of the IROMEC project (Interactive Robotic Social Mediators as Companions) that recognizes the important role of play in child development and targets children who are prevented from or inhibited in playing. The project investigates the role of an interactive, autonomous robotic toy in therapy and education for children with special needs. This paper specifically addresses the therapeutic and educational objectives related to children with autism. In recent years, robots have already been used to teach basic social interaction skills to children with autism. The added value of the IROMEC robot is that play scenarios have been developed taking children's specific strengths and needs into consideration and covering a wide range of objectives in children's development areas (sensory, communicational and interaction, motor, cognitive and social and emotional). The paper describes children's developmental areas and illustrates how different experiences and interactions with the IROMEC robot are designed to target objectives in these areas.Final Published versio

    Human-centred design methods : developing scenarios for robot assisted play informed by user panels and field trials

    Get PDF
    Original article can be found at: http://www.sciencedirect.com/ Copyright ElsevierThis article describes the user-centred development of play scenarios for robot assisted play, as part of the multidisciplinary IROMEC1 project that develops a novel robotic toy for children with special needs. The project investigates how robotic toys can become social mediators, encouraging children with special needs to discover a range of play styles, from solitary to collaborative play (with peers, carers/teachers, parents, etc.). This article explains the developmental process of constructing relevant play scenarios for children with different special needs. Results are presented from consultation with panel of experts (therapists, teachers, parents) who advised on the play needs for the various target user groups and who helped investigate how robotic toys could be used as a play tool to assist in the children’s development. Examples from experimental investigations are provided which have informed the development of scenarios throughout the design process. We conclude by pointing out the potential benefit of this work to a variety of research projects and applications involving human–robot interactions.Peer reviewe

    Development of a Semi-Autonomous Robotic System to Assist Children with Autism in Developing Visual Perspective Taking Skills

    Get PDF
    Robot-assisted therapy has been successfully used to help children with Autism Spectrum Condition (ASC) develop their social skills, but very often with the robot being fully controlled remotely by an adult operator. Although this method is reliable and allows the operator to conduct a therapy session in a customised child-centred manner, it increases the cognitive workload on the human operator since it requires them to divide their attention between the robot and the child to ensure that the robot is responding appropriately to the child's behaviour. In addition, a remote-controlled robot is not aware of the information regarding the interaction with children (e.g., body gesture and head pose, proximity etc) and consequently it does not have the ability to shape live HRIs. Further to this, a remote-controlled robot typically does not have the capacity to record this information and additional effort is required to analyse the interaction data. For these reasons, using a remote-controlled robot in robot-assisted therapy may be unsustainable for long-term interactions. To lighten the cognitive burden on the human operator and to provide a consistent therapeutic experience, it is essential to create some degrees of autonomy and enable the robot to perform some autonomous behaviours during interactions with children. Our previous research with the Kaspar robot either implemented a fully autonomous scenario involving pairs of children, which then lacked the often important input of the supervising adult, or, in most of our research, has used a remote control in the hand of the adult or the children to operate the robot. Alternatively, this paper provides an overview of the design and implementation of a robotic system called Sense- Think-Act which converts the remote-controlled scenarios of our humanoid robot into a semi-autonomous social agent with the capacity to play games autonomously (under human supervision) with children in the real-world school settings. The developed system has been implemented on the humanoid robot Kaspar and evaluated in a trial with four children with ASC at a local specialist secondary school in the UK where the data of 11 Child-Robot Interactions (CRIs) was collected. The results from this trial demonstrated that the system was successful in providing the robot with appropriate control signals to operate in a semi-autonomous manner without any latency, which supports autonomous CRIs, suggesting that the proposed architecture appears to have promising potential in supporting CRIs for real-world applications.Peer reviewe

    The Iterative Development of the Humanoid Robot Kaspar: An Assistive Robot for Children with Autism

    Get PDF
    This paper gives an overview of the design and development of the humanoid robot Kaspar. Since the first Kaspar robot was developed in 2005, the robotic platform has undergone continuous development driven by the needs of users and technological advancements enabling the integration of new features. We discuss in detail the iterative development of Kaspar’s design and clearly explain the rational of each development, which has been based on the user requirements as well as our years of experience in robot assisted therapy for children with autism, particularly focusing on how the developments benefit the children we work with. Further to this, we discuss the role and benefits of robotic autonomy on both children and therapist along with the progress that we have made on the Kaspar robot’s autonomy towards achieving a semi-autonomous child-robot interaction in a real world setting.Peer reviewe

    Affect Recognition in Autism: a single case study on integrating a humanoid robot in a standard therapy.

    Get PDF
    Autism Spectrum Disorder (ASD) is a multifaceted developmental disorder that comprises a mixture of social impairments, with deficits in many areas including the theory of mind, imitation, and communication. Moreover, people with autism have difficulty in recognising and understanding emotional expressions. We are currently working on integrating a humanoid robot within the standard clinical treatment offered to children with ASD to support the therapists. In this article, using the A-B-A' single case design, we propose a robot-assisted affect recognition training and to present the results on the child’s progress during the five months of clinical experimentation. In the investigation, we tested the generalization of learning and the long-term maintenance of new skills via the NEPSY-II affection recognition sub-test. The results of this single case study suggest the feasibility and effectiveness of using a humanoid robot to assist with emotion recognition training in children with ASD

    Acceptability of the transitional wearable companion “+me” in typical children: a pilot study

    Get PDF
    This work presents the results of the first experimentation of +me-the first prototype of Transitional Wearable Companion–run on 15 typically developed (TD) children with ages between 8 and 34 months. +me is an interactive device that looks like a teddy bear that can be worn around the neck, has touch sensors, can emit appealing lights and sounds, and has input-output contingencies that can be regulated with a tablet via Bluetooth. The participants were engaged in social play activities involving both the device and an adult experimenter. +me was designed with the objective of exploiting its intrinsic allure as an attractive toy to stimulate social interactions (e.g., eye contact, turn taking, imitation, social smiles), an aspect potentially helpful in the therapy of Autism Spectrum Disorders (ASD) and other Pervasive Developmental Disorders (PDD). The main purpose of this preliminary study is to evaluate the general acceptability of the toy by TD children, observing the elicited behaviors in preparation for future experiments involving children with ASD and other PDD. First observations, based on video recording and scoring, show that +me stimulates good social engagement in TD children, especially when their age is higher than 24 months

    KASPAR in the wild - Initial findings from a pilot study

    Get PDF
    This extended abstract describes the initial pilot work when evaluating the use of the UH Humanoid Robot KASPAR in a specialist nursery for children with social and communication disorders. Staff and volunteers at the nursery were trained in the use of KASPAR and are currently using KASPAR in their day to day activities in the nursery. This paper focuses on the design and results from the initial interviews with the participants. Results high-light the challenges of transferring experimental technologies like KASPAR from a research setting into everyday practice
    • 

    corecore