87,620 research outputs found

    Evaluation of Cognitive Architectures for Cyber-Physical Production Systems

    Full text link
    Cyber-physical production systems (CPPS) integrate physical and computational resources due to increasingly available sensors and processing power. This enables the usage of data, to create additional benefit, such as condition monitoring or optimization. These capabilities can lead to cognition, such that the system is able to adapt independently to changing circumstances by learning from additional sensors information. Developing a reference architecture for the design of CPPS and standardization of machines and software interfaces is crucial to enable compatibility of data usage between different machine models and vendors. This paper analysis existing reference architecture regarding their cognitive abilities, based on requirements that are derived from three different use cases. The results from the evaluation of the reference architectures, which include two instances that stem from the field of cognitive science, reveal a gap in the applicability of the architectures regarding the generalizability and the level of abstraction. While reference architectures from the field of automation are suitable to address use case specific requirements, and do not address the general requirements, especially w.r.t. adaptability, the examples from the field of cognitive science are well usable to reach a high level of adaption and cognition. It is desirable to merge advantages of both classes of architectures to address challenges in the field of CPPS in Industrie 4.0

    A First Step Towards Nuance-Oriented Interfaces for Virtual Environments

    Get PDF
    Designing usable interfaces for virtual environments (VEs) is not a trivial task. Much of the difficulty stems from the complexity and volume of the input data. Many VEs, in the creation of their interfaces, ignore much of the input data as a result of this. Using machine learning (ML), we introduce the notion of a nuance that can be used to increase the precision and power of a VE interface. An experiment verifying the existence of nuances using a neural network (NN) is discussed and a listing of guidelines to follow is given. We also review reasons why traditional ML techniques are difficult to apply to this problem

    Human computer interaction and theories

    Get PDF

    Reducing the Barrier to Entry of Complex Robotic Software: a MoveIt! Case Study

    Full text link
    Developing robot agnostic software frameworks involves synthesizing the disparate fields of robotic theory and software engineering while simultaneously accounting for a large variability in hardware designs and control paradigms. As the capabilities of robotic software frameworks increase, the setup difficulty and learning curve for new users also increase. If the entry barriers for configuring and using the software on robots is too high, even the most powerful of frameworks are useless. A growing need exists in robotic software engineering to aid users in getting started with, and customizing, the software framework as necessary for particular robotic applications. In this paper a case study is presented for the best practices found for lowering the barrier of entry in the MoveIt! framework, an open-source tool for mobile manipulation in ROS, that allows users to 1) quickly get basic motion planning functionality with minimal initial setup, 2) automate its configuration and optimization, and 3) easily customize its components. A graphical interface that assists the user in configuring MoveIt! is the cornerstone of our approach, coupled with the use of an existing standardized robot model for input, automatically generated robot-specific configuration files, and a plugin-based architecture for extensibility. These best practices are summarized into a set of barrier to entry design principles applicable to other robotic software. The approaches for lowering the entry barrier are evaluated by usage statistics, a user survey, and compared against our design objectives for their effectiveness to users

    Broadening the interface bandwidth in simulation based training

    Get PDF
    Currently most computer based simulations rely exclusively on computer generated graphics to create the simulation. When training is involved, the method almost exclusively used to display information to the learner is text displayed on the cathode ray tube. MICROEXPERT Systems is concentrating on broadening the communications bandwidth between the computer and user by employing a novel approach to video image storage combined with sound and voice output. An expert system is used to combine and control the presentation of analog video, sound, and voice output with computer based graphics and text. Researchers are currently involved in the development of several graphics based user interfaces for NASA, the U.S. Army, and the U.S. Navy. Here, the focus is on the human factors considerations, software modules, and hardware components being used to develop these interfaces

    Applications of high and low fidelity prototypes in researching intuitive interaction

    Get PDF
    This paper addresses some of the issues involved in incorporating use of prototypes into a research program. Definitions, merits and uses of both low and high-fidelity prototypes are discussed and then the applications of prototypes in our research program into intuitive interaction are explored. It has previously been established that intuitive interaction is based on past experience, and can be encouraged by designing interfaces that contain familiar features (Blackler, 2006; Blackler, Popovic, & Mahar, 2007b). Two aspects of the research program which are relevant to prototyping are: researching the issues of how intuitive use happens and how it can be better facilitated; and developing ways to help designers include investigations about users and their existing knowledge into their design processes in order to make interfaces more intuitive. The current and future planned applications of high and low-fidelity prototypes in each of these areas are explored. Then experiences with using high-fidelity touchscreen prototypes for experimental research into intuitive interaction are discussed, including problems with the prototypes, how they were addressed and what we have learned from the process. Next the potential for low-fidelity prototypes to elicit users’ tacit knowledge during the design process is explored. This has exciting possibilities due to the link between intuitive interaction and tacit knowledge. Finally, the challenges of developing prototype-based design tools for use by older people are discussed and future directions for using prototypes in our research program are considered. Keywords: Prototypes; intuitive interaction; experimental methodology; implicit or tacit knowledge</p

    Web interfaces to enhance CAL materials: Case studies from law and statistics

    Get PDF
    One impact of the ‘information age’ is that a variety of new learning resources have become available to both students and tutors. Using these resources effectively and with a sound pedagogical basis presents a whole array of issues for teaching professionals. In this paper the authors describe the development and implementation of a Web interface to existing computer‐based learning materials in an attempt to enhance the student learning experience. Although the innovations occurred in two very different disciplines ‐statistics and law ‐ there are common lessons to be learned about the process of learning and the use of technology

    Parallel earcons: reducing the length of audio messages

    Get PDF
    This paper describes a method of presenting structured audio messages, earcons, in parallel so that they take less time to play and can better keep pace with interactions in a human-computer interface. The two component parts of a compound earcon are played in parallel so that the time taken is only that of a single part. An experiment was conducted to test the recall and recognition of parallel compound earcons as compared to serial compound earcons. Results showed that there are no differences in the rates of recognition between the two groups. Non-musicians are also shown to be equal in performance to musicians. Some extensions to the earcon creation guidelines of Brewster, Wright and Edwards are put forward based upon research into auditory stream segregation. Parallel earcons are shown to be an effective means of increasing the presentation rates of audio messages without compromising recognition rates

    Evaluating advanced search interfaces using established information-seeking model

    No full text
    When users have poorly defined or complex goals search interfaces offering only keyword searching facilities provide inadequate support to help them reach their information-seeking objectives. The emergence of interfaces with more advanced capabilities such as faceted browsing and result clustering can go some way to some way toward addressing such problems. The evaluation of these interfaces, however, is challenging since they generally offer diverse and versatile search environments that introduce overwhelming amounts of independent variables to user studies; choosing the interface object as the only independent variable in a study would reveal very little about why one design out-performs another. Nonetheless if we could effectively compare these interfaces we would have a way to determine which was best for a given scenario and begin to learn why. In this article we present a formative framework for the evaluation of advanced search interfaces through the quantification of the strengths and weaknesses of the interfaces in supporting user tactics and varying user conditions. This framework combines established models of users, user needs, and user behaviours to achieve this. The framework is applied to evaluate three search interfaces and demonstrates the potential value of this approach to interactive IR evaluation
    corecore