13,736 research outputs found

    Adaptive Latency Insensitive Protocols andElastic Circuits with Early Evaluation: A Comparative Analysis

    Get PDF
    AbstractLatency Insensitive Protocols (LIP) and Elastic Circuits (EC) solve the same problem of rendering a design tolerant to additional latencies caused by wires or computational elements. They are performance-limited by a firing semantics that enforces coherency through a lazy evaluation rule: Computation is enabled if all inputs to a block are simultaneously available. Adaptive LIP's (ALIP) and EC with early evaluation (ECEE) increase the performance by relaxing the evaluation rule: Computation is enabled as soon as the subset of inputs needed at a given time is available. Their difference in terms of implementation and behavior in selected cases justifies the need for the comparative analysis reported in this paper. Results have been obtained through simple examples, a single representative case-study already used in the context of both LIP's and EC and through extensive simulations over a suite of benchmarks

    Latency Optimized Asynchronous Early Output Ripple Carry Adder based on Delay-Insensitive Dual-Rail Data Encoding

    Full text link
    Asynchronous circuits employing delay-insensitive codes for data representation i.e. encoding and following a 4-phase return-to-zero protocol for handshaking are generally robust. Depending upon whether a single delay-insensitive code or multiple delay-insensitive code(s) are used for data encoding, the encoding scheme is called homogeneous or heterogeneous delay-insensitive data encoding. This article proposes a new latency optimized early output asynchronous ripple carry adder (RCA) that utilizes single-bit asynchronous full adders (SAFAs) and dual-bit asynchronous full adders (DAFAs) which incorporate redundant logic and are based on the delay-insensitive dual-rail code i.e. homogeneous data encoding, and follow a 4-phase return-to-zero handshaking. Amongst various RCA, carry lookahead adder (CLA), and carry select adder (CSLA) designs, which are based on homogeneous or heterogeneous delay-insensitive data encodings which correspond to the weak-indication or the early output timing model, the proposed early output asynchronous RCA that incorporates SAFAs and DAFAs with redundant logic is found to result in reduced latency for a dual-operand addition operation. In particular, for a 32-bit asynchronous RCA, utilizing 15 stages of DAFAs and 2 stages of SAFAs leads to reduced latency. The theoretical worst-case latencies of the different asynchronous adders were calculated by taking into account the typical gate delays of a 32/28nm CMOS digital cell library, and a comparison is made with their practical worst-case latencies estimated. The theoretical and practical worst-case latencies show a close correlation....Comment: arXiv admin note: text overlap with arXiv:1704.0761

    Adaptive Latency Insensitive Protocols

    Get PDF
    Latency-insensitive design copes with excessive delays typical of global wires in current and future IC technologies. It achieves its goal via encapsulation of synchronous logic blocks in wrappers that communicate through a latency-insensitive protocol (LIP) and pipelined interconnects. Previously proposed solutions suffer from an excessive performance penalty in terms of throughput or from a lack of generality. This article presents an adaptive LIP that outperforms previous static implementations, as demonstrated by two relevant cases — a microprocessor and an MPEG encoder — whose components we made insensitive to the latencies of their interconnections through a newly developed wrapper. We also present an informal exposition of the theoretical basis of adaptive LIPs, as well as implementation detail

    Asynchronous Early Output Dual-Bit Full Adders Based on Homogeneous and Heterogeneous Delay-Insensitive Data Encoding

    Get PDF
    This paper presents the designs of asynchronous early output dual-bit full adders without and with redundant logic (implicit) corresponding to homogeneous and heterogeneous delay-insensitive data encoding. For homogeneous delay-insensitive data encoding only dual-rail i.e. 1-of-2 code is used, and for heterogeneous delay-insensitive data encoding 1-of-2 and 1-of-4 codes are used. The 4-phase return-to-zero protocol is used for handshaking. To demonstrate the merits of the proposed dual-bit full adder designs, 32-bit ripple carry adders (RCAs) are constructed comprising dual-bit full adders. The proposed dual-bit full adders based 32-bit RCAs incorporating redundant logic feature reduced latency and area compared to their non-redundant counterparts with no accompanying power penalty. In comparison with the weakly indicating 32-bit RCA constructed using homogeneously encoded dual-bit full adders containing redundant logic, the early output 32-bit RCA comprising the proposed homogeneously encoded dual-bit full adders with redundant logic reports corresponding reductions in latency and area by 22.2% and 15.1% with no associated power penalty. On the other hand, the early output 32-bit RCA constructed using the proposed heterogeneously encoded dual-bit full adder which incorporates redundant logic reports respective decreases in latency and area than the weakly indicating 32-bit RCA that consists of heterogeneously encoded dual-bit full adders with redundant logic by 21.5% and 21.3% with nil power overhead. The simulation results obtained are based on a 32/28nm CMOS process technology

    On-Chip Transparent Wire Pipelining (invited paper)

    Get PDF
    Wire pipelining has been proposed as a viable mean to break the discrepancy between decreasing gate delays and increasing wire delays in deep-submicron technologies. Far from being a straightforwardly applicable technique, this methodology requires a number of design modifications in order to insert it seamlessly in the current design flow. In this paper we briefly survey the methods presented by other researchers in the field and then we thoroughly analyze the solutions we recently proposed, ranging from system-level wire pipelining to physical design aspects

    Issues in Implementing Latency Insensitive Protocols

    Get PDF
    The performance of future Systems-on-Chip will be limited by the latency of long interconnects requiring more than one clock cycle for the signals to propagate. To deal with the problem L. Carloni et alii proposed the Latency Insensitive Protocols (LIP). A design that works under the assumption of zero-delay connections between functional modules is modified in a Latency Insensitive Design (LID) by encapsulating them within wrappers (“shells”) and connecting them through internally pipelined blocks (“relay stations”) complying with a protocol that guarantees identity of behavior [1]. The wrappers perform:- Data Validation: each output channel signals whether the datum therein present has still to be consumed.- Back Pressure: when the pearl is stopped the shell generates a stop signal sent in the opposite direction of inputs;- Clock Gating: a module waiting for new data and/or stopped keeps its present state. Such a protocol was implemented [2] through the introductio

    Area/latency optimized early output asynchronous full adders and relative-timed ripple carry adders

    Get PDF
    This article presents two area/latency optimized gate level asynchronous full adder designs which correspond to early output logic. The proposed full adders are constructed using the delay-insensitive dual-rail code and adhere to the four-phase return-to-zero handshaking. For an asynchronous ripple carry adder (RCA) constructed using the proposed early output full adders, the relative-timing assumption becomes necessary and the inherent advantages of the relative-timed RCA are: (1) computation with valid inputs, i.e., forward latency is data-dependent, and (2) computation with spacer inputs involves a bare minimum constant reverse latency of just one full adder delay, thus resulting in the optimal cycle time. With respect to different 32-bit RCA implementations, and in comparison with the optimized strong-indication, weak-indication, and early output full adder designs, one of the proposed early output full adders achieves respective reductions in latency by 67.8, 12.3 and 6.1 %, while the other proposed early output full adder achieves corresponding reductions in area by 32.6, 24.6 and 6.9 %, with practically no power penalty. Further, the proposed early output full adders based asynchronous RCAs enable minimum reductions in cycle time by 83.4, 15, and 8.8 % when considering carry-propagation over the entire RCA width of 32-bits, and maximum reductions in cycle time by 97.5, 27.4, and 22.4 % for the consideration of a typical carry chain length of 4 full adder stages, when compared to the least of the cycle time estimates of various strong-indication, weak-indication, and early output asynchronous RCAs of similar size. All the asynchronous full adders and RCAs were realized using standard cells in a semi-custom design fashion based on a 32/28 nm CMOS process technology
    • 

    corecore