437,675 research outputs found

    A Survey on Continuous Time Computations

    Full text link
    We provide an overview of theories of continuous time computation. These theories allow us to understand both the hardness of questions related to continuous time dynamical systems and the computational power of continuous time analog models. We survey the existing models, summarizing results, and point to relevant references in the literature

    Cyber-crime Science = Crime Science + Information Security

    Get PDF
    Cyber-crime Science is an emerging area of study aiming to prevent cyber-crime by combining security protection techniques from Information Security with empirical research methods used in Crime Science. Information security research has developed techniques for protecting the confidentiality, integrity, and availability of information assets but is less strong on the empirical study of the effectiveness of these techniques. Crime Science studies the effect of crime prevention techniques empirically in the real world, and proposes improvements to these techniques based on this. Combining both approaches, Cyber-crime Science transfers and further develops Information Security techniques to prevent cyber-crime, and empirically studies the effectiveness of these techniques in the real world. In this paper we review the main contributions of Crime Science as of today, illustrate its application to a typical Information Security problem, namely phishing, explore the interdisciplinary structure of Cyber-crime Science, and present an agenda for research in Cyber-crime Science in the form of a set of suggested research questions

    A probabilistic interpretation of set-membership filtering: application to polynomial systems through polytopic bounding

    Get PDF
    Set-membership estimation is usually formulated in the context of set-valued calculus and no probabilistic calculations are necessary. In this paper, we show that set-membership estimation can be equivalently formulated in the probabilistic setting by employing sets of probability measures. Inference in set-membership estimation is thus carried out by computing expectations with respect to the updated set of probability measures P as in the probabilistic case. In particular, it is shown that inference can be performed by solving a particular semi-infinite linear programming problem, which is a special case of the truncated moment problem in which only the zero-th order moment is known (i.e., the support). By writing the dual of the above semi-infinite linear programming problem, it is shown that, if the nonlinearities in the measurement and process equations are polynomial and if the bounding sets for initial state, process and measurement noises are described by polynomial inequalities, then an approximation of this semi-infinite linear programming problem can efficiently be obtained by using the theory of sum-of-squares polynomial optimization. We then derive a smart greedy procedure to compute a polytopic outer-approximation of the true membership-set, by computing the minimum-volume polytope that outer-bounds the set that includes all the means computed with respect to P

    Climbing Mount Scalable: Physical-Resource Requirements for a Scalable Quantum Computer

    Full text link
    The primary resource for quantum computation is Hilbert-space dimension. Whereas Hilbert space itself is an abstract construction, the number of dimensions available to a system is a physical quantity that requires physical resources. Avoiding a demand for an exponential amount of these resources places a fundamental constraint on the systems that are suitable for scalable quantum computation. To be scalable, the effective number of degrees of freedom in the computer must grow nearly linearly with the number of qubits in an equivalent qubit-based quantum computer.Comment: LATEX, 24 pages, 1 color .eps figure. This new version has been accepted for publication in Foundations of Physic
    • …
    corecore