3,437 research outputs found

    Towards a Convenient Category of Topological Domains

    Get PDF
    We propose a category of topological spaces that promises to be convenient for the purposes of domain theory as a mathematical theory for modelling computation. Our notion of convenience presupposes the usual properties of domain theory, e.g. modelling the basic type constructors, fixed points, recursive types, etc. In addition, we seek to model parametric polymorphism, and also to provide a flexible toolkit for modelling computational effects as free algebras for algebraic theories. Our convenient category is obtained as an application of recent work on the remarkable closure conditions of the category of quotients of countably-based topological spaces. Its convenience is a consequence of a connection with realizability models

    A Convenient Category of Domains

    Get PDF
    We motivate and define a category of "topological domains", whose objects are certain topological spaces, generalising the usual omegaomega-continuous dcppos of domain theory. Our category supports all the standard constructions of domain theory, including the solution of recursive domain equations. It also supports the construction of free algebras for (in)equational theories, provides a model of parametric polymorphism, and can be used as the basis for a theory of computability. This answers a question of Gordon Plotkin, who asked whether it was possible to construct a category of domains combining such properties

    Representations of stream processors using nested fixed points

    Get PDF
    We define representations of continuous functions on infinite streams of discrete values, both in the case of discrete-valued functions, and in the case of stream-valued functions. We define also an operation on the representations of two continuous functions between streams that yields a representation of their composite. In the case of discrete-valued functions, the representatives are well-founded (finite-path) trees of a certain kind. The underlying idea can be traced back to Brouwer's justification of bar-induction, or to Kreisel and Troelstra's elimination of choice-sequences. In the case of stream-valued functions, the representatives are non-wellfounded trees pieced together in a coinductive fashion from well-founded trees. The definition requires an alternating fixpoint construction of some ubiquity

    Presenting Distributive Laws

    Get PDF
    Distributive laws of a monad T over a functor F are categorical tools for specifying algebra-coalgebra interaction. They proved to be important for solving systems of corecursive equations, for the specification of well-behaved structural operational semantics and, more recently, also for enhancements of the bisimulation proof method. If T is a free monad, then such distributive laws correspond to simple natural transformations. However, when T is not free it can be rather difficult to prove the defining axioms of a distributive law. In this paper we describe how to obtain a distributive law for a monad with an equational presentation from a distributive law for the underlying free monad. We apply this result to show the equivalence between two different representations of context-free languages

    Inductive and Coinductive Components of Corecursive Functions in Coq

    Get PDF
    In Constructive Type Theory, recursive and corecursive definitions are subject to syntactic restrictions which guarantee termination for recursive functions and productivity for corecursive functions. However, many terminating and productive functions do not pass the syntactic tests. Bove proposed in her thesis an elegant reformulation of the method of accessibility predicates that widens the range of terminative recursive functions formalisable in Constructive Type Theory. In this paper, we pursue the same goal for productive corecursive functions. Notably, our method of formalisation of coinductive definitions of productive functions in Coq requires not only the use of ad-hoc predicates, but also a systematic algorithm that separates the inductive and coinductive parts of functions.Comment: Dans Coalgebraic Methods in Computer Science (2008
    corecore