7,337 research outputs found

    Theory grounded design of genetic programming and parallel evolutionary algorithms

    Get PDF
    Evolutionary algorithms (EAs) have been successfully applied to many problems and applications. Their success comes from being general purpose, which means that the same EA can be used to solve different problems. Despite that, many factors can affect the behaviour and the performance of an EA and it has been proven that there isn't a particular EA which can solve efficiently any problem. This opens to the issue of understanding how different design choices can affect the performance of an EA and how to efficiently design and tune one. This thesis has two main objectives. On the one hand we will advance the theoretical understanding of evolutionary algorithms, particularly focusing on Genetic Programming and Parallel Evolutionary algorithms. We will do that trying to understand how different design choices affect the performance of the algorithms and providing rigorously proven bounds of the running time for different designs. This novel knowledge, built upon previous work on the theoretical foundation of EAs, will then help for the second objective of the thesis, which is to provide theory grounded design for Parallel Evolutionary Algorithms and Genetic Programming. This will consist in being inspired by the analysis of the algorithms to produce provably good algorithm designs

    Embodied Evolution in Collective Robotics: A Review

    Full text link
    This paper provides an overview of evolutionary robotics techniques applied to on-line distributed evolution for robot collectives -- namely, embodied evolution. It provides a definition of embodied evolution as well as a thorough description of the underlying concepts and mechanisms. The paper also presents a comprehensive summary of research published in the field since its inception (1999-2017), providing various perspectives to identify the major trends. In particular, we identify a shift from considering embodied evolution as a parallel search method within small robot collectives (fewer than 10 robots) to embodied evolution as an on-line distributed learning method for designing collective behaviours in swarm-like collectives. The paper concludes with a discussion of applications and open questions, providing a milestone for past and an inspiration for future research.Comment: 23 pages, 1 figure, 1 tabl

    Evolutionary Synthesis of Analog Electronic Circuits Using EDA Algorithms

    Get PDF
    Disertační práce je zaměřena na návrh analogových elektronických obvodů pomocí algoritmů s pravěpodobnostními modely (algoritmy EDA). Prezentované metody jsou na základě požadovaných charakteristik cílových obvodů schopny navrhnout jak parametry použitých komponent tak také jejich topologii zapojení. Tři různé metody využití EDA algoritmů jsou navrženy a otestovány na příkladech skutečných problémů z oblasti analogových elektronických obvodů. První metoda je určena pro návrh pasivních analogových obvodů a využívá algoritmus UMDA pro návrh jak topologie zapojení tak také hodnot parametrů použitých komponent. Metoda je použita pro návrh admitanční sítě s požadovanou vstupní impedancí pro účely chaotického oscilátoru. Druhá metoda je také určena pro návrh pasivních analogových obvodů a využívá hybridní přístup - UMDA pro návrh topologie a metodu lokální optimalizace pro návrh parametrů komponent. Třetí metoda umožňuje návrh analogových obvodů obsahujících také tranzistory. Metoda využívá hybridní přístup - EDA algoritmus pro syntézu topologie a metoda lokální optimalizace pro určení parametrů použitých komponent. Informace o topologii je v jednotlivých jedincích populace vyjádřena pomocí grafů a hypergrafů.Dissertation thesis is focused on design of analog electronic circuits using Estimation of Distribution Algorithms (EDA). Based on the desired characteristics of the target circuits the proposed methods are able to design the parameters of the used components and theirs topology of connection as well. Three different methods employing EDA algorithms are proposed and verified on examples of real problems from the area of analog circuits design. The first method is capable to design passive analog circuits. The method employs UMDA algorithm which is used for determination of the parameters of the used components and synthesis of the topology of their connection as well. The method is verified on the problem of design of admittance network with desired input impedance function which is used as a part of chaotic oscillator circuit. The second method is also capable to design passive analog circuits. The method employs hybrid approach - UMDA for synthesis of the topology and local optimization method for determination of the parameters of the components. The third method is capable to design analog circuits which include also ac- tive components such as transistors. Hybrid approach is used. The topology is synthesized using EDA algorithm and the parameters are determined using a local optimization method. In the individuals of the population information about the topology is represented using graphs and hypergraphs.

    Agent-Based Models and Human Subject Experiments

    Get PDF
    This paper considers the relationship between agent-based modeling and economic decision-making experiments with human subjects. Both approaches exploit controlled ``laboratory'' conditions as a means of isolating the sources of aggregate phenomena. Research findings from laboratory studies of human subject behavior have inspired studies using artificial agents in ``computational laboratories'' and vice versa. In certain cases, both methods have been used to examine the same phenomenon. The focus of this paper is on the empirical validity of agent-based modeling approaches in terms of explaining data from human subject experiments. We also point out synergies between the two methodologies that have been exploited as well as promising new possibilities.agent-based models, human subject experiments, zero- intelligence agents, learning, evolutionary algorithms

    Reviewing agent-based modelling of socio-ecosystems: a methodology for the analysis of climate change adaptation and sustainability

    Get PDF
    The integrated - environmental, economic and social - analysis of climate change calls for a paradigm shift as it is fundamentally a problem of complex, bottom-up and multi-agent human behaviour. There is a growing awareness that global environmental change dynamics and the related socio-economic implications involve a degree of complexity that requires an innovative modelling of combined social and ecological systems. Climate change policy can no longer be addressed separately from a broader context of adaptation and sustainability strategies. A vast body of literature on agent-based modelling (ABM) shows its potential to couple social and environmental models, to incorporate the influence of micro-level decision making in the system dynamics and to study the emergence of collective responses to policies. However, there are few publications which concretely apply this methodology to the study of climate change related issues. The analysis of the state of the art reported in this paper supports the idea that today ABM is an appropriate methodology for the bottom-up exploration of climate policies, especially because it can take into account adaptive behaviour and heterogeneity of the system's components.Review, Agent-Based Modelling, Socio-Ecosystems, Climate Change, Adaptation, Complexity.

    From evolutionary computation to the evolution of things

    Get PDF
    Evolution has provided a source of inspiration for algorithm designers since the birth of computers. The resulting field, evolutionary computation, has been successful in solving engineering tasks ranging in outlook from the molecular to the astronomical. Today, the field is entering a new phase as evolutionary algorithms that take place in hardware are developed, opening up new avenues towards autonomous machines that can adapt to their environment. We discuss how evolutionary computation compares with natural evolution and what its benefits are relative to other computing approaches, and we introduce the emerging area of artificial evolution in physical systems

    A Guide for Newcomers to Agent-Based Modeling in the Social Sciences

    Get PDF
    This guide provides pointers to introductory readings, software, and other materials to help newcomers become acquainted with agent-based modeling in the social sciences. Related work can be accessed at: http://www.econ.iastate.edu/tesfatsi/ace.htmagent-based modeling; social sciences
    corecore