4,630 research outputs found

    The earlier the better: a theory of timed actor interfaces

    Get PDF
    Programming embedded and cyber-physical systems requires attention not only to functional behavior and correctness, but also to non-functional aspects and specifically timing and performance constraints. A structured, compositional, model-based approach based on stepwise refinement and abstraction techniques can support the development process, increase its quality and reduce development time through automation of synthesis, analysis or verification. For this purpose, we introduce in this paper a general theory of timed actor interfaces. Our theory supports a notion of refinement that is based on the principle of worst-case design that permeates the world of performance-critical systems. This is in contrast with the classical behavioral and functional refinements based on restricting or enlarging sets of behaviors. An important feature of our refinement is that it allows time-deterministic abstractions to be made of time-non-deterministic systems, improving efficiency and reducing complexity of formal analysis. We also show how our theory relates to, and can be used to reconcile a number of existing time and performance models and how their established theories can be exploited to represent and analyze interface specifications and refinement steps.\u

    Task-based Augmented Contour Trees with Fibonacci Heaps

    Full text link
    This paper presents a new algorithm for the fast, shared memory, multi-core computation of augmented contour trees on triangulations. In contrast to most existing parallel algorithms our technique computes augmented trees, enabling the full extent of contour tree based applications including data segmentation. Our approach completely revisits the traditional, sequential contour tree algorithm to re-formulate all the steps of the computation as a set of independent local tasks. This includes a new computation procedure based on Fibonacci heaps for the join and split trees, two intermediate data structures used to compute the contour tree, whose constructions are efficiently carried out concurrently thanks to the dynamic scheduling of task parallelism. We also introduce a new parallel algorithm for the combination of these two trees into the output global contour tree. Overall, this results in superior time performance in practice, both in sequential and in parallel thanks to the OpenMP task runtime. We report performance numbers that compare our approach to reference sequential and multi-threaded implementations for the computation of augmented merge and contour trees. These experiments demonstrate the run-time efficiency of our approach and its scalability on common workstations. We demonstrate the utility of our approach in data segmentation applications

    The earlier the better: a theory of timed actor interfaces

    Get PDF
    Programming embedded and cyber-physical systems requires attention not only to functional behavior and correctness, but also to non-functional aspects and specifically timing and performance. A structured, compositional, model-based approach based on stepwise refinement and abstraction techniques can support the development process, increase its quality and reduce development time through automation of synthesis, analysis or verification. Toward this, we introduce a theory of timed actors whose notion of refinement is based on the principle of worst-case design that permeates the world of performance-critical systems. This is in contrast with the classical behavioral and functional refinements based on restricting sets of behaviors. Our refinement allows time-deterministic abstractions to be made of time-non-deterministic systems, improving efficiency and reducing complexity of formal analysis. We show how our theory relates to, and can be used to reconcile existing time and performance models and their established theories

    Distributed mining of molecular fragments

    Get PDF
    In real world applications sequential algorithms of data mining and data exploration are often unsuitable for datasets with enormous size, high-dimensionality and complex data structure. Grid computing promises unprecedented opportunities for unlimited computing and storage resources. In this context there is the necessity to develop high performance distributed data mining algorithms. However, the computational complexity of the problem and the large amount of data to be explored often make the design of large scale applications particularly challenging. In this paper we present the first distributed formulation of a frequent subgraph mining algorithm for discriminative fragments of molecular compounds. Two distributed approaches have been developed and compared on the well known National Cancer Instituteā€™s HIV-screening dataset. We present experimental results on a small-scale computing environment

    Binary pattern tile set synthesis is NP-hard

    Full text link
    In the field of algorithmic self-assembly, a long-standing unproven conjecture has been that of the NP-hardness of binary pattern tile set synthesis (2-PATS). The kk-PATS problem is that of designing a tile assembly system with the smallest number of tile types which will self-assemble an input pattern of kk colors. Of both theoretical and practical significance, kk-PATS has been studied in a series of papers which have shown kk-PATS to be NP-hard for k=60k = 60, k=29k = 29, and then k=11k = 11. In this paper, we close the fundamental conjecture that 2-PATS is NP-hard, concluding this line of study. While most of our proof relies on standard mathematical proof techniques, one crucial lemma makes use of a computer-assisted proof, which is a relatively novel but increasingly utilized paradigm for deriving proofs for complex mathematical problems. This tool is especially powerful for attacking combinatorial problems, as exemplified by the proof of the four color theorem by Appel and Haken (simplified later by Robertson, Sanders, Seymour, and Thomas) or the recent important advance on the Erd\H{o}s discrepancy problem by Konev and Lisitsa using computer programs. We utilize a massively parallel algorithm and thus turn an otherwise intractable portion of our proof into a program which requires approximately a year of computation time, bringing the use of computer-assisted proofs to a new scale. We fully detail the algorithm employed by our code, and make the code freely available online

    Clique topology reveals intrinsic geometric structure in neural correlations

    Get PDF
    Detecting meaningful structure in neural activity and connectivity data is challenging in the presence of hidden nonlinearities, where traditional eigenvalue-based methods may be misleading. We introduce a novel approach to matrix analysis, called clique topology, that extracts features of the data invariant under nonlinear monotone transformations. These features can be used to detect both random and geometric structure, and depend only on the relative ordering of matrix entries. We then analyzed the activity of pyramidal neurons in rat hippocampus, recorded while the animal was exploring a two-dimensional environment, and confirmed that our method is able to detect geometric organization using only the intrinsic pattern of neural correlations. Remarkably, we found similar results during non-spatial behaviors such as wheel running and REM sleep. This suggests that the geometric structure of correlations is shaped by the underlying hippocampal circuits, and is not merely a consequence of position coding. We propose that clique topology is a powerful new tool for matrix analysis in biological settings, where the relationship of observed quantities to more meaningful variables is often nonlinear and unknown.Comment: 29 pages, 4 figures, 13 supplementary figures (last two authors contributed equally

    Flexible isosurfaces: Simplifying and displaying scalar topology using the contour tree

    Get PDF
    The contour tree is an abstraction of a scalar field that encodes the nesting relationships of isosurfaces. We show how to use the contour tree to represent individual contours of a scalar field, how to simplify both the contour tree and the topology of the scalar field, how to compute and store geometric properties for all possible contours in the contour tree, and how to use the simplified contour tree as an interface for exploratory visualization
    • ā€¦
    corecore