206,129 research outputs found

    Assessing the Unseen: Roles of Confidentiality and Trust in Software Engineering Work-based Learning Programmes [Poster]

    Get PDF
    A typical academic degree focused on software engineering has little practical relationship with the industry it is named for, other than the occasional placement or internship. Unlike other professions such as medicine, dentistry and veterinary sciences, candidates do not need to participate in significant professional practice to earn their degree. Indeed, if we consider a traditional academic software engineering student they probably have far more experience constructing shiny new ‘green-field’ systems, than maintaining the old ‘brown-field’ systems found in industry, and generating most professional work. Consequently, there is growing enthusiasm for work-based learning programmes that provide an opportunity for candidates to cement abstract academic theory in concrete personal experience. Work-based learning software engineering students earn their degree by combining theory with actual practice in a professional environment. Nevertheless, the intangible outcomes for much of software engineering has led to an industry obsessed with confidentiality, driven by concerns of employees smuggling source code to competitors or regulators. This obsession potentially presents a barrier to work-based learning schemes as employers prevent outsiders, even close higher education partners, from observing the systems and the source code that learners are working on. Learners may have the opportunity for concrete personal experience, but educators are barred from observing any such experience. However, confidentiality agreements may not necessarily present barriers to assessment, but instead provide an opportunity to assess comprehension and transferable skills by requiring abstract descriptions and reports. This is the converse to the problem in some programming courses, where students submit code without demonstrating that they understand it and can discuss it in terms of the concepts taught. In this talk and accompanying poster we explore some models for software engineering work-based learning programmes that have the potential to maintain confidentiality while assessing learners’ comprehension and ability. We invite discussion and criticism from conference attendees of the presented models, and are interested in potential partners for future collaboration

    Organization of Multi-Agent Systems: An Overview

    Full text link
    In complex, open, and heterogeneous environments, agents must be able to reorganize towards the most appropriate organizations to adapt unpredictable environment changes within Multi-Agent Systems (MAS). Types of reorganization can be seen from two different levels. The individual agents level (micro-level) in which an agent changes its behaviors and interactions with other agents to adapt its local environment. And the organizational level (macro-level) in which the whole system changes it structure by adding or removing agents. This chapter is dedicated to overview different aspects of what is called MAS Organization including its motivations, paradigms, models, and techniques adopted for statically or dynamically organizing agents in MAS.Comment: 12 page

    Designing experiments using digital fabrication in structural dynamics

    Get PDF
    In engineering, traditional approaches aimed at teaching concepts of dynamics to engineering students include the study of a dense yet sequential theoretical development of proofs and exercises. Structural dynamics are seldom taught experimentally in laboratories since these facilities should be provided with expensive equipment such as wave generators, data-acquisition systems, and heavily wired deployments with sensors. In this paper, the design of an experimental experience in the classroom based upon digital fabrication and modeling tools related to structural dynamics is presented. In particular, all experimental deployments are conceived with low-cost, open-source equipment. The hardware includes Arduino-based open-source electronics whereas the software is based upon object-oriented open-source codes for the development of physical simulations. The set of experiments and the physical simulations are reproducible and scalable in classroom-based environments.Peer ReviewedPostprint (author's final draft
    • …
    corecore