4 research outputs found

    Reusable model transformation components with bentō

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-21155-8_5Building high-quality transformations that can be used in real projects is complex and time-consuming. For this reason, the ability to reuse existing transformations in different, unforeseen scenarios is very valuable. However, there is scarce tool support for this task. This paper presents bentō, a tool which supports the development and execution of reusable transformation components. In bentō, a reusable transformation is written as a regular ATL transformation, but it uses concepts as meta-models. Reuse is achieved by binding such concepts to meta-models, which induces the transformation adaptation. Moreover, composite components enable chaining transformations, and it is possible to convert an existing transformation into a reusable component. Bentō is implemented as an Eclipse plug-in, available as free software.This work was supported by the Spanish Ministry of Economy and Competitivity with project Go-Lite (TIN2011-24139), the R&D programme of the Madrid Region with project (SICOMORO S2013/ICE-3006), and the EU commission with project MONDO (FP7-ICT 2013-10, #611125)

    Property-Based Methods for Collaborative Model Development

    Get PDF
    Industrial applications of mo del-driven engineering to de- velop large and complex systems resulted in an increasing demand for collab oration features. However, use cases such as mo del di�erencing and merging have turned out to b e a di�cult challenge, due to (i) the graph- like nature of mo dels, and (ii) the complexity of certain op erations (e.g. hierarchy refactoring) that are common to day. In the pap er, we present a novel search-based automated mo del merge approach where rule-based design space exploration is used to search the space of solution candi- dates that represent con�ict-free merged mo dels. Our metho d also allows engineers to easily incorp orate domain-sp eci�c knowledge into the merge pro cess to provide b etter solutions. The merge pro cess automatically cal- culates multiple merge candidates to b e presented to domain exp erts for �nal selection. Furthermore, we prop ose to adopt a generic synthetic b enchmark to carry out an initial scalability assessment for mo del merge with large mo dels and large change sets

    Automated Model Merge by Design Space Exploration

    Get PDF
    Industrial applications of model-driven engineering to develop large and complex systems resulted in an increasing demand for collaboration features. However, use cases such as model differencing and merging have turned out to be a difficult challenge, due to (i) the graph-like nature of models, and (ii) the complexity of certain operations (e.g. hierarchy refactoring) that are common today. In the paper, we present a novel search-based automated model merge approach where rule-based design space exploration is used to search the space of solution candidates that represent conflict-free merged models. Our method also allows engineers to easily incorporate domain-specific knowledge into the merge process to provide better solutions. The merge process automatically calculates multiple merge candidates to be presented to domain experts for final selection. Furthermore, we propose to adopt a generic synthetic benchmark to carry out an initial scalability assessment for model merge with large models and large change sets

    Modeling 4.0: Conceptual Modeling in a Digital Era

    Get PDF
    Digitization provides entirely new affordances for our economies and societies. This leads to previously unseen design opportunities and complexities as systems and their boundaries are re-defined, creating a demand for appropriate methods to support design that caters to these new demands. Conceptual modeling is an established means for this, but it needs to be advanced to adequately depict the requirements of digitization. However, unlike the actual deployment of digital technologies in various industries, the domain of conceptual modeling itself has not yet undergone a comprehensive renewal in light of digitization. Therefore, inspired by the notion of Industry 4.0, an overarching concept for digital manufacturing, in this commentary paper, we propose Modeling 4.0 as the notion for conceptual modeling mechanisms in a digital environment. In total, 12 mechanisms of conceptual modeling are distinguished, providing ample guidance for academics and professionals interested in ensuring that modeling techniques and methods continue to fit contemporary and emerging requirements
    corecore