25 research outputs found

    Weaving Rules into [email protected] for Embedded Smart Systems

    Get PDF
    Smart systems are characterised by their ability to analyse measured data in live and to react to changes according to expert rules. Therefore, such systems exploit appropriate data models together with actions, triggered by domain-related conditions. The challenge at hand is that smart systems usually need to process thousands of updates to detect which rules need to be triggered, often even on restricted hardware like a Raspberry Pi. Despite various approaches have been investigated to efficiently check conditions on data models, they either assume to fit into main memory or rely on high latency persistence storage systems that severely damage the reactivity of smart systems. To tackle this challenge, we propose a novel composition process, which weaves executable rules into a data model with lazy loading abilities. We quantitatively show, on a smart building case study, that our approach can handle, at low latency, big sets of rules on top of large-scale data models on restricted hardware.Comment: pre-print version, published in the proceedings of MOMO-17 Worksho

    Model driven product line engineering : core asset and process implications

    Get PDF
    Reuse is at the heart of major improvements in productivity and quality in Software Engineering. Both Model Driven Engineering (MDE) and Software Product Line Engineering (SPLE) are software development paradigms that promote reuse. Specifically, they promote systematic reuse and a departure from craftsmanship towards an industrialization of the software development process. MDE and SPLE have established their benefits separately. Their combination, here called Model Driven Product Line Engineering (MDPLE), gathers together the advantages of both. Nevertheless, this blending requires MDE to be recasted in SPLE terms. This has implications on both the core assets and the software development process. The challenges are twofold: (i) models become central core assets from which products are obtained and (ii) the software development process needs to cater for the changes that SPLE and MDE introduce. This dissertation proposes a solution to the first challenge following a feature oriented approach, with an emphasis on reuse and early detection of inconsistencies. The second part is dedicated to assembly processes, a clear example of the complexity MDPLE introduces in software development processes. This work advocates for a new discipline inside the general software development process, i.e., the Assembly Plan Management, which raises the abstraction level and increases reuse in such processes. Different case studies illustrate the presented ideas.This work was hosted by the University of the Basque Country (Faculty of Computer Sciences). The author enjoyed a doctoral grant from the Basque Goverment under the “Researchers Training Program” during the years 2005 to 2009. The work was was co-supported by the Spanish Ministry of Education, and the European Social Fund under contracts WAPO (TIN2005-05610) and MODELINE (TIN2008-06507-C02-01)

    Engineering bidirectional transformations

    Get PDF
    Bidirectional transformations, like software, need to be carefully engineered in order to provide guarantees about their correctness, completeness, acceptability and usability. This paper summarises a collection of lectures pertaining to engineering bidirectional transformations using Model-Driven Engineering techniques and technologies. It focuses on stages of a typical engineering lifecycle, starting with requirements and progressing to implementation and verification. It summarises Model-Driven Engineering approaches to capturing requirements, architectures and designs for bidirectional transformations, and suggests an approach for verification as well. It concludes by describing some challenges for future research into engineering bidirectional transformations

    Synthesis of OCL Pre-conditions for Graph Transformation Rules

    Get PDF
    Proceedings of: Third International Conference on Model Transformation (ICMT 2010): Theory and Practice of Model Transformation. Málaga, Spain, 28 June-02 July, 2010Graph transformation (GT) is being increasingly used in Model Driven Engineering (MDE) to describe in-place transformations like animations and refactorings. For its practical use, rules are often complemented with OCL application conditions. The advancement of rule post-conditions into pre-conditions is a well-known problem in GT, but current techniques do not consider OCL. In this paper we provide an approach to advance post-conditions with arbitrary OCL expressions into pre-conditions. This presents benefits for the practical use of GT in MDE, as it allows: (i) to automatically derive pre-conditions from the meta-model integrity constraints, ensuring rule correctness, (ii) to derive pre-conditions from graph constraints with OCL expressions and (iii) to check applicability of rule sequences with OCL conditions.Work funded by the Spanish Ministry of Science and Innovation through projects “Design and construction of a Conceptual Modeling Assistant” (TIN2008-00444/TIN - Grupo Consolidado), “METEORIC” (TIN2008-02081),mobility grants JC2009-00015 and PR2009-0019, and the R&D program of the Community of Madrid (S2009/TIC-1650, project “e-Madrid”).Publicad

    Metamodelisation to support Test and Evolution

    Get PDF
    Legacy software systems correspond to the wealth of the companies. They often exist for dozens of years and concentrate a big part of the company knowledge, its business rules or its savoir-faire. Requirements to which these systems answer have evolved with time, as well as the used technologies leading to modications. These mo-dications occurring after the software delivery, they are considered maintenance. They correspond to more than 80% of the software li-fecycle and its cost. Maintaining a software system is a complex and useful activity that deserves to o be anticipated from the design activity. Remodularisation phases may be useful to reduce complexity massed from successive evolutions and to provide new strong basis for future evolutions. Work presented in this manuscript answers to a unique target : Designing systems of good quality, easily maintainable and managing their evolutions. Quality can be ensured and measured from dierent ways. In this document, I only focus on tests. Tests enable developers to identify and locate errors or check after an evolution that unchanged parts are not impacted. Finally, software artefacts do not independently evolve. The evolution of one of them may have consequences on one or several others. In this document, two types of software are considered chains of model transformations or traditional programs. Thus, transformation chains are not seen as a way to generate code from models via transformations. They are considered software system by them selves that would need to be later maintained and to make evolve. Results presented in this document may be summarised as such : Proposal of a new transformation type localized transformations introducing better reusability, modularity and exibility in transformation chains. Adaptations in designing and building chains are thus needed

    1st doctoral symposium of the international conference on software language engineering (SLE) : collected research abstracts, October 11, 2010, Eindhoven, The Netherlands

    Get PDF
    The first Doctoral Symposium to be organised by the series of International Conferences on Software Language Engineering (SLE) will be held on October 11, 2010 in Eindhoven, as part of the 3rd instance of SLE. This conference series aims to integrate the different sub-communities of the software-language engineering community to foster cross-fertilisation and strengthen research overall. The Doctoral Symposium at SLE 2010 aims to contribute towards these goals by providing a forum for both early and late-stage Ph.D. students to present their research and get detailed feedback and advice from researchers both in and out of their particular research area. Consequently, the main objectives of this event are: – to give Ph.D. students an opportunity to write about and present their research; – to provide Ph.D. students with constructive feedback from their peers and from established researchers in their own and in different SLE sub-communities; – to build bridges for potential research collaboration; and – to foster integrated thinking about SLE challenges across sub-communities. All Ph.D. students participating in the Doctoral Symposium submitted an extended abstract describing their doctoral research. Based on a good set of submisssions we were able to accept 13 submissions for participation in the Doctoral Symposium. These proceedings present final revised versions of these accepted research abstracts. We are particularly happy to note that submissions to the Doctoral Symposium covered a wide range of SLE topics drawn from all SLE sub-communities. In selecting submissions for the Doctoral Symposium, we were supported by the members of the Doctoral-Symposium Selection Committee (SC), representing senior researchers from all areas of the SLE community.We would like to thank them for their substantial effort, without which this Doctoral Symposium would not have been possible. Throughout, they have provided reviews that go beyond the normal format of a review being extra careful in pointing out potential areas of improvement of the research or its presentation. Hopefully, these reviews themselves will already contribute substantially towards the goals of the symposium and help students improve and advance their work. Furthermore, all submitting students were also asked to provide two reviews for other submissions. The members of the SC went out of their way to comment on the quality of these reviews helping students improve their reviewing skills

    1st doctoral symposium of the international conference on software language engineering (SLE) : collected research abstracts, October 11, 2010, Eindhoven, The Netherlands

    Get PDF
    The first Doctoral Symposium to be organised by the series of International Conferences on Software Language Engineering (SLE) will be held on October 11, 2010 in Eindhoven, as part of the 3rd instance of SLE. This conference series aims to integrate the different sub-communities of the software-language engineering community to foster cross-fertilisation and strengthen research overall. The Doctoral Symposium at SLE 2010 aims to contribute towards these goals by providing a forum for both early and late-stage Ph.D. students to present their research and get detailed feedback and advice from researchers both in and out of their particular research area. Consequently, the main objectives of this event are: – to give Ph.D. students an opportunity to write about and present their research; – to provide Ph.D. students with constructive feedback from their peers and from established researchers in their own and in different SLE sub-communities; – to build bridges for potential research collaboration; and – to foster integrated thinking about SLE challenges across sub-communities. All Ph.D. students participating in the Doctoral Symposium submitted an extended abstract describing their doctoral research. Based on a good set of submisssions we were able to accept 13 submissions for participation in the Doctoral Symposium. These proceedings present final revised versions of these accepted research abstracts. We are particularly happy to note that submissions to the Doctoral Symposium covered a wide range of SLE topics drawn from all SLE sub-communities. In selecting submissions for the Doctoral Symposium, we were supported by the members of the Doctoral-Symposium Selection Committee (SC), representing senior researchers from all areas of the SLE community.We would like to thank them for their substantial effort, without which this Doctoral Symposium would not have been possible. Throughout, they have provided reviews that go beyond the normal format of a review being extra careful in pointing out potential areas of improvement of the research or its presentation. Hopefully, these reviews themselves will already contribute substantially towards the goals of the symposium and help students improve and advance their work. Furthermore, all submitting students were also asked to provide two reviews for other submissions. The members of the SC went out of their way to comment on the quality of these reviews helping students improve their reviewing skills

    Localized model transformations for building large-scale transformations

    Get PDF
    International audienceModel-Driven Engineering (MDE) exploits well-defined, tool-supported modelling languages and operations applied to models created using these languages. Model transformation is a critical part of the use of MDE. It has been argued that transformations must be engineered systematically, particularly when the languages to which they are applied are large and complicated – e.g., UML 2.x and profiles such as MARTE – and when the transformation logic itself is complex. We present an approach to designing large model transformations for large languages, based on the principle of separation of concerns. Specifically, we define a notion of localized transformations that are restricted to apply to a subset of a modelling language; a composition of localized transformations is then used to satisfy particular MDE objectives, such as the design of very large transformations. We illustrate the use of localized transformations in a concrete example applied to large transformations for system-on-chip co-design

    The Train Benchmark: cross-technology performance evaluation of continuous model queries

    Get PDF
    In model-driven development of safety-critical systems (like automotive, avionics or railways), well- formedness of models is repeatedly validated in order to detect design flaws as early as possible. In many indus- trial tools, validation rules are still often implemented by a large amount of imperative model traversal code which makes those rule implementations complicated and hard to maintain. Additionally, as models are rapidly increas- ing in size and complexity, efficient execution of validation rules is challenging for the currently available tools. Checking well-formedness constraints can be captured by declarative queries over graph models, while model update operations can be specified as model transformations. This paper presents a benchmark for systematically assessing the scalability of validating and revalidating well-formedness constraints over large graph models. The benchmark defines well-formedness validation scenarios in the railway domain: a metamodel, an instance model generator and a set of well- formedness constraints captured by queries, fault injection and repair operations (imitating the work of systems engi- neers by model transformations). The benchmark focuses on the performance of query evaluation, i.e. its execution time and memory consumption, with a particular empha- sis on reevaluation. We demonstrate that the benchmark can be adopted to various technologies and query engines, including modeling tools; relational, graph and semantic databases. The Train Benchmark is available as an open- source project with continuous builds from https://github. com/FTSRG/trainbenchmark
    corecore