58,255 research outputs found

    Representing First-Order Causal Theories by Logic Programs

    Get PDF
    Nonmonotonic causal logic, introduced by Norman McCain and Hudson Turner, became a basis for the semantics of several expressive action languages. McCain's embedding of definite propositional causal theories into logic programming paved the way to the use of answer set solvers for answering queries about actions described in such languages. In this paper we extend this embedding to nondefinite theories and to first-order causal logic.Comment: 29 pages. To appear in Theory and Practice of Logic Programming (TPLP); Theory and Practice of Logic Programming, May, 201

    Exploring the Boundaries of Monad Tensorability on Set

    Full text link
    We study a composition operation on monads, equivalently presented as large equational theories. Specifically, we discuss the existence of tensors, which are combinations of theories that impose mutual commutation of the operations from the component theories. As such, they extend the sum of two theories, which is just their unrestrained combination. Tensors of theories arise in several contexts; in particular, in the semantics of programming languages, the monad transformer for global state is given by a tensor. We present two main results: we show that the tensor of two monads need not in general exist by presenting two counterexamples, one of them involving finite powerset (i.e. the theory of join semilattices); this solves a somewhat long-standing open problem, and contrasts with recent results that had ruled out previously expected counterexamples. On the other hand, we show that tensors with bounded powerset monads do exist from countable powerset upwards

    Representing First-Order Causal Theories by Logic Programs

    Get PDF
    Nonmonotonic causal logic, introduced by McCain and Turner (McCain, N. and Turner, H. 1997. Causal theories of action and change. In Proceedings of National Conference on Artificial Intelligence (AAAI), Stanford, CA, 460–465) became the basis for the semantics of several expressive action languages. McCain\u27s embedding of definite propositional causal theories into logic programming paved the way to the use of answer set solvers for answering queries about actions described in such languages. In this paper we extend this embedding to nondefinite theories and to the first-order causal logic

    Preferences of Agents in Defeasible Logic

    Get PDF
    We are interested in programming languages for cognitive agents with preferences. We define rule-based agent theories and inference procedures in defeasible logic, and in this setting we discuss patterns of agent behavior called agent types

    Programming Cognitive Agents in Defeasible Logic

    Get PDF
    Defeasible Logic is extended to programming languages for cognitive agents with preferences and actions for planning. We define rule-based agent theories that contain preferences and actions, together with inference procedures. We discuss patterns of agent types in this setting. Finally, we illustrate the language by an example of an agent reasoning about web-services
    • …
    corecore