144 research outputs found

    Cardiac Computed Tomography Methods and Systems Using Fast Exact / Quasi Exact Filtered Back Projection Algorithms

    Get PDF
    The present invention provides systems, methods, and devices for improved computed tomography. More specifically, the present invention includes methods for improved cone-beam computed tomography (CBCT) resolution using improved filtered back projection (FBP) algorithms, which can be used for cardiac tomography and across other tomographic modalities. Embodiments provide methods, systems, and devices for reconstructing an image from projection data provided by a computed tomography scanner using the algorithms disclosed herein to generate an image with improved temporal resolution

    Filtered backprojection inversion of the cone beam transform for a general class of curves

    Get PDF
    We extend a cone beam transform inversion formula, proposed earlier for helices by one of the authors, to a general class of curves. The inversion formula remains efficient, because filtering is shift-invariant and is performed along a one-parametric family of lines. The conditions that describe the class are very natural. Curves C are smooth, without self-intersections, have positive curvature and torsion, do not bend too much, and do not admit lines which are tangent to C at one point and intersect C at another point. The notions of PI lines and PI segments are generalized, and their properties are studied. The domain U is found, where PI lines are guaranteed to be unique. Results of numerical experiments demonstrate very good image quality

    Local ROI Reconstruction via Generalized FBP and BPF Algorithms along More Flexible Curves

    Get PDF
    We study the local region-of-interest (ROI) reconstruction problem, also referred to as the local CT problem. Our scheme includes two steps: (a) the local truncated normal-dose projections are extended to global dataset by combining a few global low-dose projections; (b) the ROI are reconstructed by either the generalized filtered backprojection (FBP) or backprojection-filtration (BPF) algorithms. The simulation results show that both the FBP and BPF algorithms can reconstruct satisfactory results with image quality in the ROI comparable to that of the corresponding global CT reconstruction

    Exact Filtered Back Projection (FBP) Algorithm for Spiral Computer Tomography [US]

    Get PDF
    Reconstructing images of objects spirally scanned with two-dimensional detectors with a novel algorithm. The image reconstruction process is proven to create an exact image of the object under the ideal circumstances. The algorithm has an FBP (Filtered Back Projection) structure and works very efficiently. The algorithm uses less computer power and combines the benefits of Exact Algorithms and Approximate algorithms

    3-PI algorithm for spiral CT

    Get PDF
    Methods and systems for reconstructing images of moving objects being spirally scanned with two dimensional detectors with a 3PI algorithm. The moving objects can be scanned at a rate of up to approximately three times slower than those of pre-existing systems. In a preferred embodiment, the invention allows for a patient on a table moving through a spiral scanner to be slowed down by a factor of up to three, and still use the same size detector array as those in existing spiral scanning systems
    corecore