3,984 research outputs found

    Theoretical foundations for 1-D shock filtering

    Get PDF
    While shock filters are popular morphological image enhancement methods, no well-posedness theory is available for their corresponding partial differential equations (PDEs). By analysing the dynamical system of ordinary differential equations that results from a space discretisation of a PDE for 1-D shock filtering, we derive an analytical solution and prove well-posedness. We show that the results carry over to the fully discrete case when an explicit time discretisation is applied. Finally we establish an equivalence result between discrete shock filtering and local mode filtering

    Regularised Diffusion-Shock Inpainting

    Full text link
    We introduce regularised diffusion--shock (RDS) inpainting as a modification of diffusion--shock inpainting from our SSVM 2023 conference paper. RDS inpainting combines two carefully chosen components: homogeneous diffusion and coherence-enhancing shock filtering. It benefits from the complementary synergy of its building blocks: The shock term propagates edge data with perfect sharpness and directional accuracy over large distances due to its high degree of anisotropy. Homogeneous diffusion fills large areas efficiently. The second order equation underlying RDS inpainting inherits a maximum--minimum principle from its components, which is also fulfilled in the discrete case, in contrast to competing anisotropic methods. The regularisation addresses the largest drawback of the original model: It allows a drastic reduction in model parameters without any loss in quality. Furthermore, we extend RDS inpainting to vector-valued data. Our experiments show a performance that is comparable to or better than many inpainting models, including anisotropic processes of second or fourth order

    Conditional toggle mappings: principles and applications

    No full text
    International audienceWe study a class of mathematical morphology filters to operate conditionally according to a set of pixels marked by a binary mask. The main contribution of this paper is to provide a general framework for several applications including edge enhancement and image denoising, when it is affected by salt-and-pepper noise. We achieve this goal by revisiting shock filters based on erosions and dilations and extending their definition to take into account the prior definition of a mask of pixels that should not be altered. New definitions for conditional erosions and dilations leading to the concept of conditional toggle mapping. We also investigate algebraic properties as well as the convergence of the associate shock filter. Experiments show how the selection of appropriate methods to generate the masks lead to either edge enhancement or salt-and-pepper denoising. A quantitative evaluation of the results demonstrates the effectiveness of the proposed methods. Additionally, we analyse the application of conditional toggle mapping in remote sensing as pre-filtering for hierarchical segmentation

    Recent Progress in Image Deblurring

    Full text link
    This paper comprehensively reviews the recent development of image deblurring, including non-blind/blind, spatially invariant/variant deblurring techniques. Indeed, these techniques share the same objective of inferring a latent sharp image from one or several corresponding blurry images, while the blind deblurring techniques are also required to derive an accurate blur kernel. Considering the critical role of image restoration in modern imaging systems to provide high-quality images under complex environments such as motion, undesirable lighting conditions, and imperfect system components, image deblurring has attracted growing attention in recent years. From the viewpoint of how to handle the ill-posedness which is a crucial issue in deblurring tasks, existing methods can be grouped into five categories: Bayesian inference framework, variational methods, sparse representation-based methods, homography-based modeling, and region-based methods. In spite of achieving a certain level of development, image deblurring, especially the blind case, is limited in its success by complex application conditions which make the blur kernel hard to obtain and be spatially variant. We provide a holistic understanding and deep insight into image deblurring in this review. An analysis of the empirical evidence for representative methods, practical issues, as well as a discussion of promising future directions are also presented.Comment: 53 pages, 17 figure

    Robust Feature Detection and Local Classification for Surfaces Based on Moment Analysis

    Get PDF
    The stable local classification of discrete surfaces with respect to features such as edges and corners or concave and convex regions, respectively, is as quite difficult as well as indispensable for many surface processing applications. Usually, the feature detection is done via a local curvature analysis. If concerned with large triangular and irregular grids, e.g., generated via a marching cube algorithm, the detectors are tedious to treat and a robust classification is hard to achieve. Here, a local classification method on surfaces is presented which avoids the evaluation of discretized curvature quantities. Moreover, it provides an indicator for smoothness of a given discrete surface and comes together with a built-in multiscale. The proposed classification tool is based on local zero and first moments on the discrete surface. The corresponding integral quantities are stable to compute and they give less noisy results compared to discrete curvature quantities. The stencil width for the integration of the moments turns out to be the scale parameter. Prospective surface processing applications are the segmentation on surfaces, surface comparison, and matching and surface modeling. Here, a method for feature preserving fairing of surfaces is discussed to underline the applicability of the presented approach.
    • …
    corecore