3,145 research outputs found

    Doming Modes and Dynamics of Model Heme Compounds

    Get PDF
    Synchrotron far-IR spectroscopy and density-functional calculations are used to characterize the low-frequency dynamics of model heme FeCO compounds. The “doming” vibrational mode in which the iron atom moves out of the porphyrin plane while the periphery of this ring moves in the opposite direction determines the reactivity of oxygen with this type of molecule in biological systems. Calculations of frequencies and absorption intensities and the measured pressure dependence of vibrational modes in the model compounds are used to identify the doming and related normal modes

    Binding and Docking Interactions of NO, CO and O2 in Heme Proteins as Probed by Density Functional Theory

    Get PDF
    Dynamics and reactivity in heme proteins include direct and indirect interactions of the ligands/substrates like CO, NO and O2 with the environment. Direct electrostatic interactions result from amino acid side chains in the inner cavities and/or metal coordination in the active site, whereas indirect interactions result by ligands in the same coordination sphere. Interactions play a crucial role in stabilizing transition states in catalysis or altering ligation chemistry. We have probed, by Density Functional Theory (DFT), the perturbation degree in the stretching vibrational frequencies of CO, NO and O2 molecules in the presence of electrostatic interactions or hydrogen bonds, under conditions simulating the inner cavities. Moreover, we have studied the vibrational characteristics of the heme bound form of the CO and NO ligands by altering the chemistry of the proximal to the heme ligand. CO, NO and O2 molecules are highly polarizable exerting vibrational shifts up to 80, 200 and 120 cm−1, respectively, compared to the non-interacting ligand. The importance of Density Functional Theory (DFT) methodology in the investigation of the heme-ligand-protein interactions is also addressed

    Insights into enzymatic halogenation from computational studies

    Get PDF
    The halogenases are a group of enzymes that have only come to the fore over the last 10 years thanks to the discovery and characterization of several novel representatives. They have revealed the fascinating variety of distinct chemical mechanisms that nature utilizes to activate halogens and introduce them into organic substrates. Computational studies using a range of approaches have already elucidated many details of the mechanisms of these enzymes, often in synergistic combination with experiment. This Review summarizes the main insights gained from these studies. It also seeks to identify open questions that are amenable to computational investigations. The studies discussed herein serve to illustrate some of the limitations of the current computational approaches and the challenges encountered in computational mechanistic enzymology

    First-principles studies of the structure and dynamics of biomolecules

    Get PDF
    First-principles biosimulations have become an essential tool in the study of atoms and molecules and, increasingly, in modelling complex systems as those arising in biology. With the appearance of density-functional theory, and gradient-corrected exchange-correlation functionals, the ability to obtain an accurate enough solutions to the electronic Schrödinger equation for systems containing hundreds (or even thousands) of atoms has revolutionized biophysics and biochemistry. Biological systems exhibit a far higher degree of complexity than those studied in many other fields of physics. The sizes of the systems, long time scale of processes, the effect of the environment, and the range of intermolecular interactions provide challenging problems for the application of first-principles quantum mechanical simulations to biomolecular studies. This thesis concentrates on first-principles electronic structure calculations of various biological systems and processes. The dynamics of the active center of myoglobin has been studied by means of Born-Oppenheimer molecular dynamics. Similar methodology has been used to investigate the effect of hydration of the L-alanine amino acid and to predict its actual structure in aqueous solution at finite temperature. The effect of the environment, and the actual structure of several biomolecules in water have been investigated by means of vibrational spectra calculations. Different continuum models have been employed in calculations of the vibrational absorption, vibrational dichroism, Raman and Raman optical activity spectra. The treatment of large, biological systems, such as proteins in aqueous solution, entirely by ab initio methods is extremely expensive. The thesis demonstrates various approaches to overcome size and time scale limits. The work presented here is an example of how quantum mechanical techniques can successfully be applied to biologically relevant problems in rather large and complex systems.reviewe

    Coordination Chemistry of Nitric Oxide and Biological Signaling

    Get PDF
    Nitric Oxide (NO) is a key intermediate in the nitrogen redox cycles that operate in soils, water and biological fluids, affording reversible interconversions between nitrates to ammonia and vice-versa. The discovery of its biosynthesis in mammals for signaling purposes generated a research explosion on the ongoing chemistry occurring in specific cellular compartments, centered on NO reactivity toward O2 , thiols, amines, and transition metals, as well as derivatives thereof. The present review deals with the coordination chemistry of NO toward selected iron and ruthenium centers. We place specific attention to the three redox states of the nitrosyl group: NO+, NO and NO– /HNO, describing changes in structure and reactivity as coordination takes place. Noteworthy are the results with the most reduced nitroxyl-species that allow establishing the changes in the measurable pKa values for the HNO-bound complexes, also revealing the abrupt decrease in reducing power and trans-releasing abilities of the protonated species over the unprotonated ones, NO– . Comparative results using non-heme and heme proteins and models prove useful for suggesting further improvements in the current research status of complex enzymatic behavior.Fil: Olabe Iparraguirre, Jose Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentin

    Recent developments in effective antioxidants : the structure and antioxidant properties

    Get PDF
    Since the last few years, the growing interest in the use of natural and synthetic antioxidants as functional food ingredients and dietary supplements, is observed. The imbalance between the number of antioxidants and free radicals is the cause of oxidative damages of proteins, lipids, and DNA. The aim of the study was the review of recent developments in antioxidants. One of the crucial issues in food technology, medicine, and biotechnology is the excess free radicals reduction to obtain healthy food. The major problem is receiving more effective antioxidants. The study aimed to analyze the properties of efficient antioxidants and a better understanding of the molecular mechanism of antioxidant processes. Our researches and sparing literature data prove that the ligand antioxidant properties complexed by selected metals may significantly affect the free radical neutralization. According to our preliminary observation, this efficiency is improved mainly by the metals of high ion potential, e.g., Fe(III), Cr(III), Ln(III), Y(III). The complexes of delocalized electronic charge are better antioxidants. Experimental literature results of antioxidant assays, such as diphenylpicrylhydrazyl (DPPH) and ferric reducing activity power assay (FRAP), were compared to thermodynamic parameters obtained with computational methods. The mechanisms of free radicals creation were described based on the experimental literature data. Changes in HOMO energy distribution in phenolic acids with an increasing number of hydroxyl groups were observed. The antioxidant properties of flavonoids are strongly dependent on the hydroxyl group position and the catechol moiety. The number of methoxy groups in the phenolic acid molecules influences antioxidant activity. The use of synchrotron techniques in the antioxidants electronic structure analysis was proposed
    corecore