67 research outputs found

    Techniques for Wideband All Digital Polar Transmission

    Get PDF
    abstract: Modern Communication systems are progressively moving towards all-digital transmitters (ADTs) due to their high efficiency and potentially large frequency range. While significant work has been done on individual blocks within the ADT, there are few to no full systems designs at this point in time. The goal of this work is to provide a set of multiple novel block architectures which will allow for greater cohesion between the various ADT blocks. Furthermore, the design of these architectures are expected to focus on the practicalities of system design, such as regulatory compliance, which here to date has largely been neglected by the academic community. Amongst these techniques are a novel upconverted phase modulation, polyphase harmonic cancellation, and process voltage and temperature (PVT) invariant Delta Sigma phase interpolation. It will be shown in this work that the implementation of the aforementioned architectures allows ADTs to be designed with state of the art size, power, and accuracy levels, all while maintaining PVT insensitivity. Due to the significant performance enhancement over previously published works, this work presents the first feasible ADT architecture suitable for widespread commercial deployment.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Interference Suppression in Massive MIMO VLC Systems

    Get PDF
    The focus of this dissertation is on the development and evaluation of methods and principles to mitigate interference in multiuser visible light communication (VLC) systems using several transmitters. All components of such a massive multiple-input multiple-output (MIMO) system are considered and transformed into a communication system model, while also paying particular attention to the hardware requirements of different modulation schemes. By analyzing all steps in the communication process, the inter-channel interference between users is identified as the most critical aspect. Several methods of suppressing this kind of interference, i.e. to split the MIMO channel into parallel single channels, are discussed, and a novel active LCD-based interference suppression principle at the receiver side is introduced as main aspect of this work. This technique enables a dynamic adaption of the physical channel: compared to solely software-based or static approaches, the LCD interference suppression filter achieves adaptive channel separation without altering the characteristics of the transmitter lights. This is especially advantageous in dual-use scenarios with illumination requirements. Additionally, external interferers, like natural light or transmitter light sources of neighboring cells in a multicell setting, can also be suppressed without requiring any control over them. Each user's LCD filter is placed in front of the corresponding photodetector and configured in such a way that only light from desired transmitters can reach the detector by setting only the appropriate pixels to transparent, while light from unwanted transmitters remains blocked. The effectiveness of this method is tested and benchmarked against zero-forcing (ZF) precoding in different scenarios and applications by numerical simulations and also verified experimentally in a large MIMO VLC testbed created specifically for this purpose

    Hierarchical colour-shift-keying aided layered video streaming for the visible light downlink

    No full text
    Colour-shift keying (CSK) constitutes an important modulation scheme conceived for the visible light communications (VLC). The signal constellation of CSK relies on three different-color light sources invoked for information transmission. The CSK constellation has been optimized for minimizing the bit error rate, but no effort has been invested in investigating the feasibility of CSK aided unequal error protection (UEP) schemes conceived for video sources. Hence, in this treatise, we conceive a hierarchical CSK (HCSK) modulation scheme based on the traditional CSK, which is capable of generating interdependent layers of signals having different error probability, which can be readily reconfigured by changing its parameters. Furthermore, we conceived an HCSK design example for transmitting scalable video sources with the aid of a recursive systematic convolutional (RSC) code. An optimization method is conceived for enhancing the UEP and for improving the quality of the received video. Our simulation results show that the proposed optimized-UEP 16-HCSK-RSC system outperforms the traditional equal error protection scheme by ~ 1.7 dB of optical SNR at a peak signal-to-noise ratio of 37 dB, while optical SNR savings of up to 6.5 dB are attained at a lower PSNR of 36 dB

    Applications of Power Electronics:Volume 2

    Get PDF

    Spectrum and energy efficient digital modulation techniques for practical visible light communication systems

    Get PDF
    The growth in mobile data traffic is rapidly increasing in an unsustainable direction given the radio frequency (RF) spectrum limits. Visible light communication (VLC) offers a lucrative solution based on an alternative license-free frequency band that is safe to use and inexpensive to utilize. Improving the spectral and energy efficiency of intensity modulation and direct detection (IM/DD) systems is still an on-going challenge in VLC. The energy efficiency of inherently unipolar modulation techniques such as pulse-amplitude modulation discrete multitone modulation (PAM-DMT) and asymmetrically clipped optical orthogonal frequency division multiplexing (ACO-OFDM) degrades at high spectral efficiency. Two novel superposition modulation techniques are proposed in this thesis based on PAM-DMT and ACO-OFDM. In addition, a practical solution based on the computationally efficient augmented spectral efficiency discrete multi-tone (ASE-DMT) is proposed. The system performance of the proposed superposition modulation techniques offers significant electrical and optical power savings with up to 8 dB in the electrical signal-to-noise ratio (SNR) when compared with DC-biased optical orthogonal frequency division multiplexing (DCO-OFDM). The theoretical bit error ratio (BER) performance bounds for all of the proposed modulation techniques are in agreement with the Monte-Carlo simulation results. The proposed superposition modulation techniques are promising candidates for spectrum and energy efficient IM/DD systems. Two experimental studies are presented for a VLC system based on DCO-OFDM with adaptive bit and energy loading. Micrometer-sized Gallium Nitride light emitting diode (m-LED) and light amplification by stimulated emission of radiation diode (LD) are used in these studies due to their high modulation bandwidth. Record data rates are achieved with a BER below the forward error correction (FEC) threshold at 7.91 Gb/s using the violet m-LED and at 15 Gb/s using the blue LD. These results highlight the potential of VLC systems in practical high speed communication solutions. An additional experimental study is demonstrated for the proposed superposition modulation techniques based on ASE-DMT. The experimentally achieved results confirm the theoretical and simulation based performance predictions of ASE-DMT. A significant gain of up to 17.33 dB in SNR is demonstrated at a low direct current (DC) bias. Finally, the perception that VLC systems cannot work under the presence of sunlight is addressed in this thesis. A complete framework is presented to evaluate the performance of VLC systems in the presence of solar irradiance at any given location and time. The effect of sunlight is investigated in terms of the degradations in SNR, data rate and BER. A reliable high speed communication system is achieved under the sunlight effect. An optical bandpass blue filter is shown to compensate for half of the reduced data rate in the presence of sunlight. This thesis demonstrates data rates above 1 Gb/s for a practical VLC link under strong solar illuminance measured at 50350 lux in clear weather conditions

    Telecommunication Systems

    Get PDF
    This book is based on both industrial and academic research efforts in which a number of recent advancements and rare insights into telecommunication systems are well presented. The volume is organized into four parts: "Telecommunication Protocol, Optimization, and Security Frameworks", "Next-Generation Optical Access Technologies", "Convergence of Wireless-Optical Networks" and "Advanced Relay and Antenna Systems for Smart Networks." Chapters within these parts are self-contained and cross-referenced to facilitate further study

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modified our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the field of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    Applications of MATLAB in Science and Engineering

    Get PDF
    The book consists of 24 chapters illustrating a wide range of areas where MATLAB tools are applied. These areas include mathematics, physics, chemistry and chemical engineering, mechanical engineering, biological (molecular biology) and medical sciences, communication and control systems, digital signal, image and video processing, system modeling and simulation. Many interesting problems have been included throughout the book, and its contents will be beneficial for students and professionals in wide areas of interest
    corecore