42,527 research outputs found

    Implementation of the Combined--Nonlinear Condensation Transformation

    Full text link
    We discuss several applications of the recently proposed combined nonlinear-condensation transformation (CNCT) for the evaluation of slowly convergent, nonalternating series. These include certain statistical distributions which are of importance in linguistics, statistical-mechanics theory, and biophysics (statistical analysis of DNA sequences). We also discuss applications of the transformation in experimental mathematics, and we briefly expand on further applications in theoretical physics. Finally, we discuss a related Mathematica program for the computation of Lerch's transcendent.Comment: 23 pages, 1 table, 1 figure (Comput. Phys. Commun., in press

    Stochastic modelling, Bayesian inference, and new in vivo measurements elucidate the debated mtDNA bottleneck mechanism

    Get PDF
    Dangerous damage to mitochondrial DNA (mtDNA) can be ameliorated during mammalian development through a highly debated mechanism called the mtDNA bottleneck. Uncertainty surrounding this process limits our ability to address inherited mtDNA diseases. We produce a new, physically motivated, generalisable theoretical model for mtDNA populations during development, allowing the first statistical comparison of proposed bottleneck mechanisms. Using approximate Bayesian computation and mouse data, we find most statistical support for a combination of binomial partitioning of mtDNAs at cell divisions and random mtDNA turnover, meaning that the debated exact magnitude of mtDNA copy number depletion is flexible. New experimental measurements from a wild-derived mtDNA pairing in mice confirm the theoretical predictions of this model. We analytically solve a mathematical description of this mechanism, computing probabilities of mtDNA disease onset, efficacy of clinical sampling strategies, and effects of potential dynamic interventions, thus developing a quantitative and experimentally-supported stochastic theory of the bottleneck.Comment: Main text: 14 pages, 5 figures; Supplement: 17 pages, 4 figures; Total: 31 pages, 9 figure

    G-Complexity, Quantum Computation and Anticipatory Processes

    Get PDF

    DNA Computing by Self-Assembly

    Get PDF
    Information and algorithms appear to be central to biological organization and processes, from the storage and reproduction of genetic information to the control of developmental processes to the sophisticated computations performed by the nervous system. Much as human technology uses electronic microprocessors to control electromechanical devices, biological organisms use biochemical circuits to control molecular and chemical events. The engineering and programming of biochemical circuits, in vivo and in vitro, would transform industries that use chemical and nanostructured materials. Although the construction of biochemical circuits has been explored theoretically since the birth of molecular biology, our practical experience with the capabilities and possible programming of biochemical algorithms is still very young

    Exact theory of kinkable elastic polymers

    Get PDF
    The importance of nonlinearities in material constitutive relations has long been appreciated in the continuum mechanics of macroscopic rods. Although the moment (torque) response to bending is almost universally linear for small deflection angles, many rod systems exhibit a high-curvature softening. The signature behavior of these rod systems is a kinking transition in which the bending is localized. Recent DNA cyclization experiments by Cloutier and Widom have offered evidence that the linear-elastic bending theory fails to describe the high-curvature mechanics of DNA. Motivated by this recent experimental work, we develop a simple and exact theory of the statistical mechanics of linear-elastic polymer chains that can undergo a kinking transition. We characterize the kinking behavior with a single parameter and show that the resulting theory reproduces both the low-curvature linear-elastic behavior which is already well described by the Wormlike Chain model, as well as the high-curvature softening observed in recent cyclization experiments.Comment: Revised for PRE. 40 pages, 12 figure

    Elastic Rod Model of a Supercoiled DNA Molecule

    Full text link
    We study the elastic behaviour of a supercoiled DNA molecule. The simplest model is that of a rod like chain, involving two elastic constants, the bending and the twist rigidities. We show that this model is singular and needs a small distance cut-off, which is a natural length scale giving the limit of validity of the model, of the order of the double helix pitch. The rod like chain in presence of the cutoff is able to reproduce quantitatively the experimentally observed effects of supercoiling on the elongation-force characteristics, in the small supercoiling regime. An exact solution of the model, using both transfer matrix techniques and its mapping to a quantum mechanics problem, allows to extract, from the experimental data,the value of the twist rigidity. We also analyse the variation of the torque and the writhe to twist ratio versus supercoiling, showing analytically the existence of a rather sharp crossover regime which can be related to the excitation of plectonemic-like structures. Finally we study the extension fluctuations of a stretched and supercoiled DNA molecule, both at fixed torque and at fixed supercoiling angle, and we compare the theoretical predictions to some preliminary experimental data.Comment: 29 pages Revtex 5 figure
    • 

    corecore