558 research outputs found

    Robust and Flexible Persistent Scatterer Interferometry for Long-Term and Large-Scale Displacement Monitoring

    Get PDF
    Die Persistent Scatterer Interferometrie (PSI) ist eine Methode zur Überwachung von Verschiebungen der ErdoberflĂ€che aus dem Weltraum. Sie basiert auf der Identifizierung und Analyse von stabilen Punktstreuern (sog. Persistent Scatterer, PS) durch die Anwendung von AnsĂ€tzen der Zeitreihenanalyse auf Stapel von SAR-Interferogrammen. PS Punkte dominieren die RĂŒckstreuung der Auflösungszellen, in denen sie sich befinden, und werden durch geringfĂŒgige Dekorrelation charakterisiert. Verschiebungen solcher PS Punkte können mit einer potenziellen Submillimetergenauigkeit ĂŒberwacht werden, wenn Störquellen effektiv minimiert werden. Im Laufe der Zeit hat sich die PSI in bestimmten Anwendungen zu einer operationellen Technologie entwickelt. Es gibt jedoch immer noch herausfordernde Anwendungen fĂŒr die Methode. Physische VerĂ€nderungen der LandoberflĂ€che und Änderungen in der Aufnahmegeometrie können dazu fĂŒhren, dass PS Punkte im Laufe der Zeit erscheinen oder verschwinden. Die Anzahl der kontinuierlich kohĂ€renten PS Punkte nimmt mit zunehmender LĂ€nge der Zeitreihen ab, wĂ€hrend die Anzahl der TPS Punkte zunimmt, die nur wĂ€hrend eines oder mehrerer getrennter Segmente der analysierten Zeitreihe kohĂ€rent sind. Daher ist es wĂŒnschenswert, die Analyse solcher TPS Punkte in die PSI zu integrieren, um ein flexibles PSI-System zu entwickeln, das in der Lage ist mit dynamischen VerĂ€nderungen der LandoberflĂ€che umzugehen und somit ein kontinuierliches Verschiebungsmonitoring ermöglicht. Eine weitere Herausforderung der PSI besteht darin, großflĂ€chiges Monitoring in Regionen mit komplexen atmosphĂ€rischen Bedingungen durchzufĂŒhren. Letztere fĂŒhren zu hoher Unsicherheit in den Verschiebungszeitreihen bei großen AbstĂ€nden zur rĂ€umlichen Referenz. Diese Arbeit befasst sich mit Modifikationen und Erweiterungen, die auf der Grund lage eines bestehenden PSI-Algorithmus realisiert wurden, um einen robusten und flexiblen PSI-Ansatz zu entwickeln, der mit den oben genannten Herausforderungen umgehen kann. Als erster Hauptbeitrag wird eine Methode prĂ€sentiert, die TPS Punkte vollstĂ€ndig in die PSI integriert. In Evaluierungsstudien mit echten SAR Daten wird gezeigt, dass die Integration von TPS Punkten tatsĂ€chlich die BewĂ€ltigung dynamischer VerĂ€nderungen der LandoberflĂ€che ermöglicht und mit zunehmender ZeitreihenlĂ€nge zunehmende Relevanz fĂŒr PSI-basierte Beobachtungsnetzwerke hat. Der zweite Hauptbeitrag ist die Vorstellung einer Methode zur kovarianzbasierten Referenzintegration in großflĂ€chige PSI-Anwendungen zur SchĂ€tzung von rĂ€umlich korreliertem Rauschen. Die Methode basiert auf der Abtastung des Rauschens an Referenzpixeln mit bekannten Verschiebungszeitreihen und anschließender Interpolation auf die restlichen PS Pixel unter BerĂŒcksichtigung der rĂ€umlichen Statistik des Rauschens. Es wird in einer Simulationsstudie sowie einer Studie mit realen Daten gezeigt, dass die Methode ĂŒberlegene Leistung im Vergleich zu alternativen Methoden zur Reduktion von rĂ€umlich korreliertem Rauschen in Interferogrammen mittels Referenzintegration zeigt. Die entwickelte PSI-Methode wird schließlich zur Untersuchung von Landsenkung im Vietnamesischen Teil des Mekong Deltas eingesetzt, das seit einigen Jahrzehnten von Landsenkung und verschiedenen anderen Umweltproblemen betroffen ist. Die geschĂ€tzten Landsenkungsraten zeigen eine hohe VariabilitĂ€t auf kurzen sowie großen rĂ€umlichen Skalen. Die höchsten Senkungsraten von bis zu 6 cm pro Jahr treten hauptsĂ€chlich in stĂ€dtischen Gebieten auf. Es kann gezeigt werden, dass der grĂ¶ĂŸte Teil der Landsenkung ihren Ursprung im oberflĂ€chennahen Untergrund hat. Die prĂ€sentierte Methode zur Reduzierung von rĂ€umlich korreliertem Rauschen verbessert die Ergebnisse signifikant, wenn eine angemessene rĂ€umliche Verteilung von Referenzgebieten verfĂŒgbar ist. In diesem Fall wird das Rauschen effektiv reduziert und unabhĂ€ngige Ergebnisse von zwei Interferogrammstapeln, die aus unterschiedlichen Orbits aufgenommen wurden, zeigen große Übereinstimmung. Die Integration von TPS Punkten fĂŒhrt fĂŒr die analysierte Zeitreihe von sechs Jahren zu einer deutlich grĂ¶ĂŸeren Anzahl an identifizierten TPS als PS Punkten im gesamten Untersuchungsgebiet und verbessert damit das Beobachtungsnetzwerk erheblich. Ein spezieller Anwendungsfall der TPS Integration wird vorgestellt, der auf der Clusterung von TPS Punkten basiert, die innerhalb der analysierten Zeitreihe erschienen, um neue Konstruktionen systematisch zu identifizieren und ihre anfĂ€ngliche Bewegungszeitreihen zu analysieren

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Superconducting Circuit Architectures Based on Waveguide Quantum Electrodynamics

    Get PDF
    Quantum science and technology provides new possibilities in processing information, simulating novel materials, and answering fundamental questions beyond the reach of classical methods. Realizing these goals relies on the advancement of physical platforms, among which superconducting circuits have been one of the leading candidates offering complete control and read-out over individual qubits and the potential to scale up. However, most circuit-based multi-qubit architectures only include nearest-neighbor (NN) coupling between qubits, which limits the efficient implementation of low-overhead quantum error correction and access to a wide range of physical models using analog quantum simulation. This challenge can be overcome by introducing non-local degrees of freedom. For example, photons in a shared channel between qubits can mediate long-range qubit-qubit coupling arising from light-matter interaction. In addition, constructing a scalable architecture requires this channel to be intrinsically extensible, in which case a one-dimensional waveguide is an ideal structure providing the extensible direction as well as strong light-matter interaction. In this thesis, we explore superconducting circuit architectures based on light-matter interactions in waveguide quantum electrodynamics (QED) systems. These architectures in return allow us to study light-matter interaction, demonstrating strong coupling in the open environment of a waveguide by employing sub-radiant states resulting from collective effects. We further engineer the waveguide dispersion to enter the topological photonics regime, exploring interactions between qubits that are mediated by photons with topological properties. Finally, towards the goals of quantum information processing and simulation, we settle into a multi-qubit architecture where the photon-mediated interaction between qubits exhibits tunable range and strength. We use this multi-qubit architecture to construct a lattice with tunable connectivity for strongly interacting microwave photons, synthesizing a quantum many-body model to explore chaotic dynamics. The architectures in this thesis introduce scalable beyond-NN coupling between superconducting qubits, opening the door to the exploration of many-body physics with long-range coupling and efficient implementation of quantum information processing protocols.</p

    Broadband Quantum Memory in Atomic Ensembles

    Full text link
    Broadband quantum memory is critical to enabling the operation of emerging photonic quantum technology at high speeds. Here we review a central challenge to achieving broadband quantum memory in atomic ensembles -- what we call the 'linewidth-bandwidth mismatch' problem -- and the relative merits of various memory protocols and hardware used for accomplishing this task. We also review the theory underlying atomic ensemble quantum memory and its extensions to optimizing memory efficiency and characterizing memory sensitivity. Finally, we examine the state-of-the-art performance of broadband atomic ensemble quantum memories with respect to three key metrics: efficiency, memory lifetime, and noise.Comment: 40 pages, 11 figures, submitted to Advances in AMO Physic

    (b2023 to 2014) The UNBELIEVABLE similarities between the ideas of some people (2006-2016) and my ideas (2002-2008) in physics (quantum mechanics, cosmology), cognitive neuroscience, philosophy of mind, and philosophy (this manuscript would require a REVOLUTION in international academy environment!)

    Get PDF
    (b2023 to 2014) The UNBELIEVABLE similarities between the ideas of some people (2006-2016) and my ideas (2002-2008) in physics (quantum mechanics, cosmology), cognitive neuroscience, philosophy of mind, and philosophy (this manuscript would require a REVOLUTION in international academy environment!

    Computational Imaging for Phase Retrieval and Biomedical Applications

    Get PDF
    In conventional imaging, optimizing hardware is prioritized to enhance image quality directly. Digital signal processing is viewed as supplementary. Computational imaging intentionally distorts images through modulation schemes in illumination or sensing. Then its reconstruction algorithms extract desired object information from raw data afterwards. Co-designing hardware and algorithms reduces demands on hardware and achieves the same or even better image quality. Algorithm design is at the heart of computational imaging, with model-based inverse problem or data-driven deep learning methods as approaches. This thesis presents research work from both perspectives, with a primary focus on the phase retrieval issue in computational microscopy and the application of deep learning techniques to address biomedical imaging challenges. The first half of the thesis begins with Fourier ptychography, which was employed to overcome chromatic aberration problems in multispectral imaging. Then, we proposed a novel computational coherent imaging modality based on Kramers-Kronig relations, aiming to replace Fourier ptychography as a non-iterative method. While this approach showed promise, it lacks certain essential characteristics of the original Fourier ptychography. To address this limitation, we introduced two additional algorithms to form a whole package scheme. Through comprehensive evaluation, we demonstrated that the combined scheme outperforms Fourier ptychography in achieving high-resolution, large field-of-view, aberration-free coherent imaging. The second half of the thesis shifts focus to deep-learning-based methods. In one project, we optimized the scanning strategy and image processing pipeline of an epifluorescence microscope to address focus issues. Additionally, we leveraged deep-learning-based object detection models to automate cell analysis tasks. In another project, we predicted the polarity status of mouse embryos from bright field images using adapted deep learning models. These findings highlight the capability of computational imaging to automate labor-intensive processes, and even outperform humans in challenging tasks.</p
    • 

    corecore