856 research outputs found

    Invisible control of self-organizing agents leaving unknown environments

    Get PDF
    In this paper we are concerned with multiscale modeling, control, and simulation of self-organizing agents leaving an unknown area under limited visibility, with special emphasis on crowds. We first introduce a new microscopic model characterized by an exploration phase and an evacuation phase. The main ingredients of the model are an alignment term, accounting for the herding effect typical of uncertain behavior, and a random walk, accounting for the need to explore the environment under limited visibility. We consider both metrical and topological interactions. Moreover, a few special agents, the leaders, not recognized as such by the crowd, are "hidden" in the crowd with a special controlled dynamics. Next, relying on a Boltzmann approach, we derive a mesoscopic model for a continuum density of followers, coupled with a microscopic description for the leaders' dynamics. Finally, optimal control of the crowd is studied. It is assumed that leaders exploit the herding effect in order to steer the crowd towards the exits and reduce clogging. Locally-optimal behavior of leaders is computed. Numerical simulations show the efficiency of the optimization methods in both microscopic and mesoscopic settings. We also perform a real experiment with people to study the feasibility of the proposed bottom-up crowd control technique.Comment: in SIAM J. Appl. Math, 201

    Dynamics of pedestrians in regions with no visibility - a lattice model without exclusion

    Get PDF
    We investigate the motion of pedestrians through obscure corridors where the lack of visibility (due to smoke, fog, darkness, etc.) hides the precise position of the exits. We focus our attention on a set of basic mechanisms, which we assume to be governing the dynamics at the individual level. Using a lattice model, we explore the effects of non-exclusion on the overall exit flux (evacuation rate). More precisely, we study the effect of the buddying threshold (of no-exclusion per site) on the dynamics of the crowd and investigate to which extent our model confirms the following pattern revealed by investigations on real emergencies: If the evacuees tend to cooperate and act altruistically, then their collective action tends to favor the occurrence of disasters.Comment: 20 page

    Pedestrians moving in dark: Balancing measures and playing games on lattices

    Get PDF
    We present two conceptually new modeling approaches aimed at describing the motion of pedestrians in obscured corridors: * a Becker-D\"{o}ring-type dynamics * a probabilistic cellular automaton model. In both models the group formation is affected by a threshold. The pedestrians are supposed to have very limited knowledge about their current position and their neighborhood; they can form groups up to a certain size and they can leave them. Their main goal is to find the exit of the corridor. Although being of mathematically different character, the discussion of both models shows that it seems to be a disadvantage for the individual to adhere to larger groups. We illustrate this effect numerically by solving both model systems. Finally we list some of our main open questions and conjectures

    Thermodynamics of a gas of pedestrians: theory and experiment

    Get PDF
    In this paper, we perform an experiment on the interaction of pedestrians in a chaotic environment and investigate the possibility to study its results using a thermodynamic model. In contrast to simple single-file unidirectional scenarios, where only distance and time are relevant to adjust walking speed, bidirectional cases are much more complex since pedestrians can perform evading manoeuvres to avoid collisions. To better understand collision avoidance in a bidimensional environment we designed a set of experiments where people need to move chaotically for the whole time. Trajectories of moving pedestrians were obtained by tracking their head position, but a method to obtain body orientation failed, thus limiting reliable information on average quantities, i.e. average density and speed. By analysing those data, we showed that equations for thermodynamic processes can be used to describe pedestrian dynamics from medium densities or a state where interaction distances are very small. To allow combining low density cognitive aspects of collision avoidance with semi-random motion at medium densities we also developed a microscopic simulation model inspired by physics. Results show that, after calibrations, the simulation model allows to reproduce the fundamental diagram of different studies despite the very simple rules implemented. This shows that describing the statistical nature of specific crowds requires a relatively small set of rules and research should focus on cognitive/psychological aspects which are essential for understanding crowds of people

    Survey of detection techniques, mathematical models and simulation software in pedestrian dynamics

    Get PDF
    The study of pedestrian dynamics has become in the latest years an increasing field of research. A relevant number of technicians have been looking for improving technologies able to detect walking people in various conditions. Several researchers have dedicated their works to model walking dynamics and general laws. Many studiers have developed interesting software to simulate pedestrian behavior in all sorts of situations and environments. Nevertheless, till nowadays, no research has been carried out to analyze all the three over-mentioned aspects. The remarked lack in literature of a complete research, pointing out the fundamental features of pedestrian detection techniques, pedestrian modelling and simulation and their tight relationships, motivates the draft of this paper. Aim of the paper is, first, to provide a schematic summary of each topic. Secondly, a more detailed description of the subjects is displayed, pointing out the advantages and disadvantages of each detection technology, the working logic of each model, outlining the inputs and the provided outputs, and the main features of the simulation software. Finally, the obtained results are summarized and discussed, in order to outline the correlation among the three explained themes

    Simulation and Optimization of Pedestrian Regular Evacuation in Comprehensive Rail Transit Hub – A Case Study in Beijing

    Get PDF
    Extensive efforts have been made in pedestrian evacuation of urban rail transit systems, since there has emerged an increasing number of congestion problems. However, few studies focus on the comprehensive urban rail transit hubs. As a comprehensive interchange hub integrating urban railway and intercity railway lines, Beijing West Railway Station was taken as a case study object. The pedestrian evacuation characteristics were analysed first. Then, a social force-based simulation model of Beijing West Railway Station was constructed in PTV Viswalk. The model was applied to visually display a real evacuation process and help identify evacuation bottlenecks. The results showed that the risk points at different facilities had various causes and features. Furthermore, the simulation model could also be used to evaluate the effectiveness of different optimization measures as long as certain model parameters were changed beforehand.</p

    The effect of person order on egress time: a simulation model of evacuation from a neolithic visitor attraction.

    Get PDF
    Objective: The aim of this study was to model the egress of visitors from a Neolithic visitor attraction. Background: Tourism attracts increasing numbers of elderly and mobility-impaired visitors to our built-environment heritage sites. Some such sites have very limited and awkward access, were not designed for mass visitation, and may not be modifiable to facilitate disabled access. As a result, emergency evacuation planning must take cognizance of robust information, and in this study we aimed to establish the effect of visitor position on egress. Method: Direct observation of three tours at Maeshowe, Orkney, informed typical time of able-bodied individuals and a mobility-impaired person through the 10-m access tunnel. This observation informed the design of egress and evacuation models running on the Unity gaming platform. Results: A slow-moving person at the observed speed typically increased time to safety of 20 people by 170% and reduced the advantage offered by closer tunnel separation by 26%. Using speeds for size-specific characters of 50th, 95th, and 99th percentiles increased time to safety in emergency evacuation by 51% compared with able-bodied individuals. Conclusion: Larger individuals may slow egress times of a group; however, a single slow-moving mobility-impaired person exerts a greater influence on group egress, profoundly influencing those behind. Application: Unidirectional routes in historic buildings and other visitor attractions are vulnerable to slow-moving visitors during egress. The model presented in this study is scalable, is applicable to other buildings, and can be used as part of a risk assessment and emergency evacuation plan in future work

    THE STANCE LOGISTICS: An Attempt to Adapt Logistics Principles on Human and Inter-human Movement Behaviors

    Get PDF
    The broad span of Logistics Management encompasses control of time, place, movement, energy (efforts, labor), as well as the positioning, stance and movement of products, materials, commodities, and people. This study coins the term Stance Logistics to focus on the stance and movement of people within the range of Logistics principles. The philosophy behind this is to enhance the required sensitivity with respect to management and control of time, place, movement, motion, stance and energy in material and nonmaterial exchanges and in all types of human encounters. Stance Logistics includes not only the “on foot” (pedestrian) or “in-vehicle” (automated) movements and public behaviour in stopping, standing, and positioning, but also individual predisposition of physical and mental response, and awareness (aesthesia). This essay describes the application of the scientific principles of Logistics to the personal experiences of people. Current Logistics literature includes mostly models developed on pedestrian and evacuation movement behaviour. To the author’s knowledge, however, there is nothing documented on the issue of personal individual Logistics Stance. Behaviours, especially that of blocking other people’s ways and passages, intervening, rudeness and queue-jumping in various environmental settings have not been extensively studied, if at all, whether during walking, pausing, stopping, face-to-face encounters, standing or waiting in lines and lanes or waiting for an elevator or metro train door to open. This study seeks underlying clues to increase sensitivity and awareness of people’s movement particularly in public areas by shedding light on Logistics behaviours of people. When combined with applicable models of pedestrian movements and integrated with the general principles of Logistics, Stance Logistics can serve as an important guide to facilitate the daily activities of many people. It is believed that, this exploratory study will pave the way for further research to produce promising results on the aspects of this new concept of Stance Logistic
    corecore