207 research outputs found

    SAGE-Based Algorithm for Direction-of-Arrival Estimation and Array Calibration

    Get PDF
    Most existing array processing algorithms are very sensitive to model uncertainties caused by the mutual coupling and sensor location error. To mitigate this problem, a novel method for direction-of-arrival (DOA) estimation and array calibration in the case of deterministic signals with unknown waveforms is presented in this paper. The analysis begins with a comprehensive perturbed array output model, and it is effective for various kinds of perturbations, such as mutual coupling and sensor location error. Based on this model, the Space Alternating Generalized Expectation-Maximization (SAGE) algorithm is applied to jointly estimate the DOA and array perturbation parameters, which simplifies the multidimensional search procedure required for finding maximum likelihood (ML) estimates. The proposed method inherits the characteristics of good convergence and high estimation precision of the SAGE algorithm. At the same time, it forms a unified framework for DOA and array perturbation parameters estimation in the presence of mutual coupling and sensor location error. The simulation results demonstrate the effectiveness of the algorithm

    Asymptotically Optimal Blind Calibration of Uniform Linear Sensor Arrays for Narrowband Gaussian Signals

    Full text link
    An asymptotically optimal blind calibration scheme of uniform linear arrays for narrowband Gaussian signals is proposed. Rather than taking the direct Maximum Likelihood (ML) approach for joint estimation of all the unknown model parameters, which leads to a multi-dimensional optimization problem with no closed-form solution, we revisit Paulraj and Kailath's (P-K's) classical approach in exploiting the special (Toeplitz) structure of the observations' covariance. However, we offer a substantial improvement over P-K's ordinary Least Squares (LS) estimates by using asymptotic approximations in order to obtain simple, non-iterative, (quasi-)linear Optimally-Weighted LS (OWLS) estimates of the sensors gains and phases offsets with asymptotically optimal weighting, based only on the empirical covariance matrix of the measurements. Moreover, we prove that our resulting estimates are also asymptotically optimal w.r.t. the raw data, and can therefore be deemed equivalent to the ML Estimates (MLE), which are otherwise obtained by joint ML estimation of all the unknown model parameters. After deriving computationally convenient expressions of the respective Cram\'er-Rao lower bounds, we also show that our estimates offer improved performance when applied to non-Gaussian signals (and/or noise) as quasi-MLE in a similar setting. The optimal performance of our estimates is demonstrated in simulation experiments, with a considerable improvement (reaching an order of magnitude and more) in the resulting mean squared errors w.r.t. P-K's ordinary LS estimates. We also demonstrate the improved accuracy in a multiple-sources directions-of-arrivals estimation task.Comment: in IEEE Transactions on Signal Processin

    Applications in Quantum Hypothesis Testing

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Enhancements to the Generalized Sidelobe Canceller for Audio Beamforming in an Immersive Environment

    Get PDF
    The Generalized Sidelobe Canceller is an adaptive algorithm for optimally estimating the parameters for beamforming, the signal processing technique of combining data from an array of sensors to improve SNR at a point in space. This work focuses on the algorithm’s application to widely-separated microphone arrays with irregular distributions used for human voice capture. Methods are presented for improving the performance of the algorithm’s blocking matrix, a stage that creates a noise reference for elimination, by proposing a stochastic model for amplitude correction and enhanced use of cross correlation for phase correction and time-difference of arrival estimation via a correlation coefficient threshold. This correlation technique is also applied to a multilateration algorithm for an efficient method of explicit target tracking. In addition, the underlying microphone array geometry is studied with parameters and guidelines for evaluation proposed. Finally, an analysis of the stability of the system is performed with respect to its adaptation parameters

    Model-Switched Beamformer with Large Dynamic Range

    Get PDF
    The strong desired signal will be mitigated due to "self-nulling" for the adaptive beamformer, even if the array calibration is used. The proposed methodology switches the models between phased array and adaptive array. In general, the system utilizes Frost adaptive beamforming. However, it will be switched to phased array if the "self-nulling" appears. According to the estimation of the array pattern at the direction of desired signal, we can determine if the "self-nulling" happens. The new approach is much easier to implement compared with the various robust beamforming algorithms

    Advanced modulation technology development for earth station demodulator applications

    Get PDF
    The purpose of this contract was to develop a high rate (200 Mbps), bandwidth efficient, modulation format using low cost hardware, in 1990's technology. The modulation format chosen is 16-ary continuous phase frequency shift keying (CPFSK). The implementation of the modulation format uses a unique combination of a limiter/discriminator followed by an accumulator to determine transmitted phase. An important feature of the modulation scheme is the way coding is applied to efficiently gain back the performance lost by the close spacing of the phase points

    Experimental study of turbulent-jet wave packets and their acoustic efficiency

    Get PDF
    This paper details the statistical and time-resolved analysis of the relationship between the near-field pressure fluctuations of unforced, subsonic free jets (0.4 ≤ M ≤ 0.6) and their far-field sound emissions. Near-field and far-field microphone measurements were taken on a conical array close to the jets and an azimuthal ring at 20∘ to the jet axis, respectively. Recent velocity and pressure measurements indicate the presence of linear wave packets in the near field by closely matching predictions from the linear homogenous parabolized stability equations, but the agreement breaks down both beyond the end of the potential core and when considering higher order statistical moments, such as the two-point coherence. Proper orthogonal decomposition (POD), interpreted in terms of inhomogeneous linear models using the resolvent framework allows us to understand these discrepancies. A new technique is developed for projecting time-domain pressure measurements onto a statistically obtained POD basis, yielding the time-resolved activity of each POD mode and its correlation with the far field. A single POD mode, interpreted as an optimal high-gain structure that arises due to turbulent forcing, captures the salient near-field–far-field correlation signature; further, the signatures of the next two modes, understood as suboptimally forced structures, suggest that these POD modes represent higher order, acoustically important near-field behavior. An existing Green's-function-based technique is used to make far-field predictions, and results are interpreted in terms of POD/resolvent modes, indicating the acoustic importance of this higher order behavior. The technique is extended to provide time-domain far-field predictions
    • …
    corecore