3,168 research outputs found

    Coined quantum walks on percolation graphs

    Full text link
    Quantum walks, both discrete (coined) and continuous time, form the basis of several quantum algorithms and have been used to model processes such as transport in spin chains and quantum chemistry. The enhanced spreading and mixing properties of quantum walks compared with their classical counterparts have been well-studied on regular structures and also shown to be sensitive to defects and imperfections in the lattice. As a simple example of a disordered system, we consider percolation lattices, in which edges or sites are randomly missing, interrupting the progress of the quantum walk. We use numerical simulation to study the properties of coined quantum walks on these percolation lattices in one and two dimensions. In one dimension (the line) we introduce a simple notion of quantum tunneling and determine how this affects the properties of the quantum walk as it spreads. On two-dimensional percolation lattices, we show how the spreading rate varies from linear in the number of steps down to zero, as the percolation probability decreases to the critical point. This provides an example of fractional scaling in quantum walk dynamics.Comment: 25 pages, 14 figures; v2 expanded and improved presentation after referee comments, added extra figur

    Experimental realization of a momentum-space quantum walk

    Full text link
    We report on a discrete-time quantum walk that uses the momentum of ultra-cold rubidium-87 atoms as the walk space and two internal atomic states as the coin degree of freedom. Each step of the walk consists of a coin toss (a microwave pulse) followed by a unitary shift operator (a resonant ratchet pulse). We carry out a comprehensive experimental study on the effects of various parameters, including the strength of the shift operation, coin parameters, noise, and initialization of the system on the behavior of the walk. The walk dynamics can be well controlled in our experiment; potential applications include atom interferometry and engineering asymmetric walks.Comment: 11 pages, 11 figure

    Non-stationary quantum walks on the cycle

    Full text link
    We consider quantum walks on the cycle in the non-stationary case where the `coin' operation is allowed to change at each time step. We characterize, in algebraic terms, the set of possible state transfers and prove that, as opposed to the stationary case, it is possible to asymnptotically reach a uniform distribution among the nodes of the associated graph.Comment: Revised version with minor change

    Quantum phase transition using quantum walks in an optical lattice

    Full text link
    We present an approach using quantum walks (QWs) to redistribute ultracold atoms in an optical lattice. Different density profiles of atoms can be obtained by exploiting the controllable properties of QWs, such as the variance and the probability distribution in position space using quantum coin parameters and engineered noise. The QW evolves the density profile of atoms in a superposition of position space resulting in a quadratic speedup of the process of quantum phase transition. We also discuss implementation in presently available setups of ultracold atoms in optical lattices.Comment: 7 pages, 8 figure

    Quantum simulation of bosonic-fermionic non-interacting particles in disordered systems via quantum walk

    Get PDF
    We report on the theoretical analysis of bosonic and fermionic non-interacting systems in a discrete two-particle quantum walk affected by different kinds of disorder. We considered up to 100-step QWs with a spatial, temporal and space-temporal disorder observing how the randomness and the wavefunction symmetry non-trivially affect the final spatial probability distribution, the transport properties and the Shannon entropy of the walkers.Comment: 13 pages, 10 figures. arXiv admin note: text overlap with arXiv:1101.2638 by other author
    corecore