64 research outputs found

    High-power deep-UV laser for improved and novel experiments on hydrogen

    Get PDF
    2019 Spring.Includes bibliographical references.This dissertation details the design, performance, and cavity enhancement of a novel, high-power coherent 243.1 nm laser system, and through simulations, its ability to trap hydrogen in a magic wavelength optical trap. This wavelength of light is necessary to address the 1S–2S two-photon transition in hydrogen, and the primary motivation behind development of this laser system is obtaining high enough 243.1 nm powers for two-photon cooling of hydrogen. Due to the light mass of hydrogen, high precision spectroscopy of hydrogen is limited by unwanted motional effects, which could be mitigated with laser cooling and confinement in an optical trap. Besides laser cooling, a high power deep-UV laser system at this wavelength has great utility for improving spectroscopy of hydrogen and other exotic simple systems. High-power fiber lasers from 1-1.2 µm have flourished as a result of advances in ytterbium(Yb)-doped fiber amplifiers. In addition, high-power Yb-fiber lasers between 975-980 nm have also been developed—a notable accomplishment due to gain competition in the > 1 µm spectral region. These systems initially lacked sufficiently narrow spectral bandwidth for efficient harmonic generation, motivating further development since there is significant interest in frequency doubling and quadrupling these sources to produce coherent blue radiation and deep-UV radiation. Here, we generate coherent, high-power deep-UV radiation through frequency quadrupling of a high-power, highly coherent Yb-fiber amplifier at 972.5 nm. The Yb-fiber amplifier system consists of a frequency stabilized master oscillator power amplifier (MOPA) that can be referenced to a coherent frequency comb. This MOPA can be amplified to > 10 W of narrow linewidth power at 972.5 nm in the Yb-fiber amplifier. This is a technically challenging and notable result for this wavelength as gain is much more readily obtained in Yb-doped fibers at the absorption/emission cross-section peak near 975 nm and in the > 1 µm spectral region where the emission cross-section is much larger than the absorption cross-section. This system successfully combated unwanted gain at these wavelengths by using a relatively short (≈ 10 cm), angle-polished Yb-fiber with a large core-cladding ratio, along with aggressive spectral filtering and large amounts of seed power at 972.5 nm. With this narrow linewidth Yb-fiber amplifier, efficient frequency conversion of high power 972-976 nm radiation to 243-244 nm radiation is possible through intracavity doubling. Through successive resonant doubling stages, this system demonstrates > 1 W of highly stable, continuous-wave (CW) 243.1 nm power. To the author's knowledge, this is a record amount of CW deep-UV power below 266 nm, and is made possible thanks to advances in the production of a relatively new non-linear crystal for robust deep-UV generation, cesium lithium borate (CLBO). The precise frequency control of this radiation is established via excitation of the 1S–2S transition in hydrogen, and the viability for two-photon laser cooling on this transition is shown through enhancement of this power to > 30 W of intracavity power in a deep-UV enhancement cavity. At these powers, UV-induced mirror degradation was observed and mitigated by flushing the enhancement cavity mirrors with ultra-pure oxygen. With these powers, rapid two-photon laser cooling of a hydrogen atomic beam approaches reality. The 243.1 nm powers offered by this laser system also offer unique methods for capturing hydrogen in an optical trap. Explored via simulations, single optical scatter capture of hydrogen in a magic wavelength dipole trap is demonstrated, promising exciting new avenues for high precision spectroscopy of hydrogen

    Compact near-infrared 3-dimensional channel waveguide lasers

    Get PDF
    This thesis presents the development of ultrafast near-infrared (NIR) waveguide laser sources, through the fabrication of waveguides in Yb-doped bismuthate glass using ultrafast laser inscription (ULI). An integrated linear cavity waveguide laser is demonstrated in the glass with output powers of 163 mW and a slope efficiency of 79%. The laser performance is comparable to bulk systems while providing additional advantages in terms of low threshold ~35 mW and system compactness. The simultaneous achievement of low propagation losses and preservation of the fluorescence properties of Yb ions after the ULI process is key to the outstanding laser performance. Based on the current interest in ultrafast laser development using graphene as a saturable absorber (SA), a systematic study of nonlinear absorption in graphene is presented. The nonlinear optical characterisation of graphene at the wavelengths of 1 μm and 2 μm contributes to the experimental evidence for the wavelength independent absorption saturation in the material. Ultrashort pulse generation from the Yb-doped bismuthate waveguide laser is investigated using SAs based on semiconductor technology and carbon nanostructures. The quasi-monolithic waveguide laser, employing a graphene SA generated ~485 mW output power with a slope efficiency of 49%. The laser generated ~1 ps pulses in a Q-switched mode-locked regime, with the mode-locked pulses measuring a high repetition rate of 1.5 GHz. Ultrafast laser development is also investigated based on a novel evanescent-wave mode-locker device, fabricated by ULI. The device consists of an orthogonal waveguide with the right-angle positioned along its angled facet. The substrate is converted into a mode-locker by depositing carbon nanotube SA at the angled facet. Mode-locked operation is demonstrated by incorporating the substrate in an Er-doped ring laser, generating ~800 fs pulses at 26 MHz. Some preliminary work is done to replicate the device design in an active gain medium, namely, Yb-doped bismuthate glass, for the development of compact laser sources

    Tunable Two-Color Ultrafast Yb:Fiber Chirped Pulse Amplifier: Modeling, Experiment, and Application in Tunable Short-Pulse Mid-Infrared Generation

    Get PDF
    In this thesis, I have developed a tunable two-color two-stage ultrafast Yb:fiber chirped pulse amplifier for the generation of short-pulse mid-infrared (MIR) radiation in the long-wavelength side of the "molecular fingerprint" (2.5-25 μm) using difference frequency generation (DFG) technique. The two colors called blue and red are in the wavelengths 1.03-1.11 μm and are amplified simultaneously in the same Yb-doped fiber amplifier (YDFA) stages in order to reduce the induced environmental noise on the phase difference of the pulses and to minimize the complexity and system cost. I will present numerical simulations on the two-stage YDFA system to amplify a two-color spectrum in the wavelengths 1.03-1.11 μm. The first and second YDFA called preamplifier and main amplifier are single-clad, single-mode and double-clad, single-mode YDFA respectively. From numerical simulations, the optimal length of the preamplifier to have equal power at two colors centered at 1043 nm and 1105 nm are in agreement with experimental results. It is well known that the power of MIR radiation generated by difference frequency mixing of two wavelengths scales up with the product of mixing powers in a fixed-field approximation. Furthermore, for the gain narrowing effect on the short-wavelength side of the YDFA gain profile, the spectral bandwidth of the blue color decreases resulting in pulse broadening. In addition, for the two colors separated largely, the amplified spontaneous emission is intensified. Considering the cited factors, I will present the modeling results on the two-color, two-stage YDFA system that the product of the power of the two colors is maximized for a maximized wavelength separation between the two mixing colors and a minimized gain narrowing on the blue color in order to build an as broadly tunable and powerful as possible ultrafast mid-infrared source by difference frequency mixing of the two colors. In this research, I achieved a wavelength separation as broad as 71 nm between pulses centered at 1038 nm and 1109 nm from the two-color ultrafast YDFA system. I achieved combined average powers of 2.7 W just after the main amplifier and 1.5 W after compressing the two-color pulses centered at 1041 nm and 1103 nm to nearly Fourier transform limited pulses. From autocorrelation measurements, the full width at half maximum (FWHM) of the compressed two-color pulses with the peak wavelengths of 1041 nm and 1103 nm was ~500 fs. By mixing the tunable two-color pulses in a 1-mm-thick GaSe crystal using DFG technique, I achieved tunable short-pulse MIR radiation. In this research, I achieved short-pulse MIR radiation tunable in the wavelengths 16-20 μm. The MIR tuning range from the lower side was limited to the 16 μm because of the 71-nm limitation on the two-color separation and from the upper side was limited to the 20 μm because of the 20-μm cutoff absorption wavelength of GaSe. Based on measured MIR spectra, the MIR pulses have a picosecond pulse duration in the wavelengths 16-20 μm. The FWHM of measured spectra of the MIR pulses increases from 0.3 μm to 0.8 μm as the MIR wavelength increases from 16 μm to 20 μm. According to Fourier transform theory, the FWHM of the MIR spectra corresponds to the bandwidth of picosecond MIR pulses assuming that the MIR pulses are perfectly Fourier-transform-limited Gaussian pulses. In this research, I achieved a maximum average power of 1.5 mW on short-pulse MIR radiation at the wavelength 18.5 μm corresponding to the difference frequency of the 500-fs two-color pulses with the peak wavelengths of 1041 nm and 1103 nm and average powers of 1350 mW and 80 mW respectively. Considering the gain bandwidth, Ti:sapphire is a main competitor to the YDFA to be used in the two-color ultrafast laser systems. In the past, the broad gain bandwidth of Ti:sapphire crystal has resulted in synchronized two-color pulses with a wavelength separation up to 120 nm. Apart from its bulkiness and high cost, Ti:sapphire laser system is limited to a watt-level output average power at room temperature mainly due to Kerr lensing problem that occurs at high pumping powers. In comparison, YDFA as a laser amplifier has a narrower gain bandwidth but it is superior in terms of average power. Optical parametric generation (OPG) and optical parametric amplification (OPA) techniques are two competitors to DFG technique for the generation of short-pulse long-wavelength MIR radiation. Although OPG offers a tunability range as broad as DFG, the MIR output power is lower because of the absence of input signal pulses. From the OPA technique, the tunability range is not as broad as the DFG technique due to limitations with the spectral bandwidth of the optical elements. Currently, quantum cascade lasers (QCLs) are the state-of-art MIR laser sources. At the present time, the tunability range of a single MIR QCL is not as abroad as that achieved from the DFG technique. More, mode-locked MIR QCLs are not abundant mainly because of the fast gain recovery time. Thus, the generation of widely tunable short-pulse MIR radiation from DFG technique such as that developed in this thesis remains as a persistent technological solution. The application of the system developed in this thesis is twofold: on one hand, the tunable two-color ultrashort pulses will find applications for example in pump-probe ultrafast spectroscopy, short-pulse MIR generation, and optical frequency combs generation. On the other hand, the short-pulse MIR radiation will find applications for example in time-resolved MIR spectroscopy to study dynamical behavior of large molecules such as organic and biological molecules

    Raman Fiber Lasers and Amplifiers based on Multimode Fibers and their Applications to Beam Cleanup

    Get PDF
    Raman fiber lasers (RFLs) and Raman fiber amplifiers (RFAs) in multimode fibers were explored. The RFL based on a graded-index fiber was shown to be very efficient relative to RFLs based on singlemode fibers. Several configurations of the RFL were examined; the beam quality of the Stokes beam depended on the reflectivity of the output coupler and the Stokes power. When used as a beam combiner, the RFL was a highly efficient brightness converter. RFL configurations which used dichroic mirrors were shown to be potentially useful for RFLs based on very large fibers. The forward- and backward-seeded geometries of an RFA based on a graded-index fiber were examined. The beam quality of the output was observed to depend on the beam quality of the input. A numerical model explains this behavior in terms of mode competition and explains why beam cleanup occurs in graded-index fibers but not in step-index fibers. The spectrum of the forward-seeded geometry was superior to the spectrum of the backward-seeded geometry. The RFA was used as a beam combiner

    Advanced progress on χ(3) nonlinearity in chip-scale photonic platforms

    Get PDF
    χ(3) nonlinearity enables ultrafast femtosecond scale light-to-light coupling and manipulation of intensity, phase, and frequency. χ(3) nonlinear functionality in micro-and nano-scale photonic waveguides can potentially replace bulky fiber platforms for many applications. In this Review, we summarize and comment on the progress on χ(3) nonlinearity in chip-scale photonic platforms, including several focused hot topics such as broadband and coherent sources in the new bands, nonlinear pulse shaping, and all-optical signal processing. An outlook of challenges and prospects on this hot research field is given at the end

    Nonlinear and Quantum Optics with Whispering Gallery Resonators

    Full text link
    Optical Whispering Gallery Modes (WGMs) derive their name from a famous acoustic phenomenon of guiding a wave by a curved boundary observed nearly a century ago. This phenomenon has a rather general nature, equally applicable to sound and all other waves. It enables resonators of unique properties attractive both in science and engineering. Very high quality factors of optical WGM resonators persisting in a wide wavelength range spanning from radio frequencies to ultraviolet light, their small mode volume, and tunable in- and out- coupling make them exceptionally efficient for nonlinear optical applications. Nonlinear optics facilitates interaction of photons with each other and with other physical systems, and is of prime importance in quantum optics. In this paper we review numerous applications of WGM resonators in nonlinear and quantum optics. We outline the current areas of interest, summarize progress, highlight difficulties, and discuss possible future development trends in these areas.Comment: This is a review paper with 615 references, submitted to J. Op
    • …
    corecore