102,530 research outputs found

    Successor features for transfer in reinforcement learning

    Get PDF
    Transfer in reinforcement learning refers to the notion that generalization should occur not only within a task but also across tasks. Our focus is on transfer where the reward functions vary across tasks while the environment's dynamics remain the same. The method we propose rests on two key ideas: "successor features," a value function representation that decouples the dynamics of the environment from the rewards, and "generalized policy improvement," a generalization of dynamic programming's policy improvement step that considers a set of policies rather than a single one. Put together, the two ideas lead to an approach that integrates seamlessly within the reinforcement learning framework and allows transfer to take place between tasks without any restriction. The proposed method also provides performance guarantees for the transferred policy even before any learning has taken place. We derive two theorems that set our approach in firm theoretical ground and present experiments that show that it successfully promotes transfer in practice

    Transductive conformal inference with adaptive scores

    Full text link
    Conformal inference is a fundamental and versatile tool that provides distribution-free guarantees for many machine learning tasks. We consider the transductive setting, where decisions are made on a test sample of mm new points, giving rise to mm conformal pp-values. {While classical results only concern their marginal distribution, we show that their joint distribution follows a P\'olya urn model, and establish a concentration inequality for their empirical distribution function.} The results hold for arbitrary exchangeable scores, including {\it adaptive} ones that can use the covariates of the test+calibration samples at training stage for increased accuracy. We demonstrate the usefulness of these theoretical results through uniform, in-probability guarantees for two machine learning tasks of current interest: interval prediction for transductive transfer learning and novelty detection based on two-class classification.Comment: 27 pages, 6 Figure

    Hypothesis Transfer Learning with Surrogate Classification Losses: Generalization Bounds through Algorithmic Stability

    Full text link
    Hypothesis transfer learning (HTL) contrasts domain adaptation by allowing for a previous task leverage, named the source, into a new one, the target, without requiring access to the source data. Indeed, HTL relies only on a hypothesis learnt from such source data, relieving the hurdle of expansive data storage and providing great practical benefits. Hence, HTL is highly beneficial for real-world applications relying on big data. The analysis of such a method from a theoretical perspective faces multiple challenges, particularly in classification tasks. This paper deals with this problem by studying the learning theory of HTL through algorithmic stability, an attractive theoretical framework for machine learning algorithms analysis. In particular, we are interested in the statistical behaviour of the regularized empirical risk minimizers in the case of binary classification. Our stability analysis provides learning guarantees under mild assumptions. Consequently, we derive several complexity-free generalization bounds for essential statistical quantities like the training error, the excess risk and cross-validation estimates. These refined bounds allow understanding the benefits of transfer learning and comparing the behaviour of standard losses in different scenarios, leading to valuable insights for practitioners

    Minimax Optimal Transfer Learning for Kernel-based Nonparametric Regression

    Full text link
    In recent years, transfer learning has garnered significant attention in the machine learning community. Its ability to leverage knowledge from related studies to improve generalization performance in a target study has made it highly appealing. This paper focuses on investigating the transfer learning problem within the context of nonparametric regression over a reproducing kernel Hilbert space. The aim is to bridge the gap between practical effectiveness and theoretical guarantees. We specifically consider two scenarios: one where the transferable sources are known and another where they are unknown. For the known transferable source case, we propose a two-step kernel-based estimator by solely using kernel ridge regression. For the unknown case, we develop a novel method based on an efficient aggregation algorithm, which can automatically detect and alleviate the effects of negative sources. This paper provides the statistical properties of the desired estimators and establishes the minimax optimal rate. Through extensive numerical experiments on synthetic data and real examples, we validate our theoretical findings and demonstrate the effectiveness of our proposed method
    • …
    corecore