497,792 research outputs found

    Parameterized Algorithmics for Computational Social Choice: Nine Research Challenges

    Full text link
    Computational Social Choice is an interdisciplinary research area involving Economics, Political Science, and Social Science on the one side, and Mathematics and Computer Science (including Artificial Intelligence and Multiagent Systems) on the other side. Typical computational problems studied in this field include the vulnerability of voting procedures against attacks, or preference aggregation in multi-agent systems. Parameterized Algorithmics is a subfield of Theoretical Computer Science seeking to exploit meaningful problem-specific parameters in order to identify tractable special cases of in general computationally hard problems. In this paper, we propose nine of our favorite research challenges concerning the parameterized complexity of problems appearing in this context

    The view from elsewhere: perspectives on ALife Modeling

    Get PDF
    Many artificial life researchers stress the interdisciplinary character of the field. Against such a backdrop, this report reviews and discusses artificial life, as it is depicted in, and as it interfaces with, adjacent disciplines (in particular, philosophy, biology, and linguistics), and in the light of a specific historical example of interdisciplinary research (namely cybernetics) with which artificial life shares many features. This report grew out of a workshop held at the Sixth European Conference on Artificial Life in Prague and features individual contributions from the workshop's eight speakers, plus a section designed to reflect the debates that took place during the workshop's discussion sessions. The major theme that emerged during these sessions was the identity and status of artificial life as a scientific endeavor

    Quantitative Verification: Formal Guarantees for Timeliness, Reliability and Performance

    Get PDF
    Computerised systems appear in almost all aspects of our daily lives, often in safety-critical scenarios such as embedded control systems in cars and aircraft or medical devices such as pacemakers and sensors. We are thus increasingly reliant on these systems working correctly, despite often operating in unpredictable or unreliable environments. Designers of such devices need ways to guarantee that they will operate in a reliable and efficient manner. Quantitative verification is a technique for analysing quantitative aspects of a system's design, such as timeliness, reliability or performance. It applies formal methods, based on a rigorous analysis of a mathematical model of the system, to automatically prove certain precisely specified properties, e.g. ``the airbag will always deploy within 20 milliseconds after a crash'' or ``the probability of both sensors failing simultaneously is less than 0.001''. The ability to formally guarantee quantitative properties of this kind is beneficial across a wide range of application domains. For example, in safety-critical systems, it may be essential to establish credible bounds on the probability with which certain failures or combinations of failures can occur. In embedded control systems, it is often important to comply with strict constraints on timing or resources. More generally, being able to derive guarantees on precisely specified levels of performance or efficiency is a valuable tool in the design of, for example, wireless networking protocols, robotic systems or power management algorithms, to name but a few. This report gives a short introduction to quantitative verification, focusing in particular on a widely used technique called model checking, and its generalisation to the analysis of quantitative aspects of a system such as timing, probabilistic behaviour or resource usage. The intended audience is industrial designers and developers of systems such as those highlighted above who could benefit from the application of quantitative verification,but lack expertise in formal verification or modelling

    Abstract State Machines 1988-1998: Commented ASM Bibliography

    Get PDF
    An annotated bibliography of papers which deal with or use Abstract State Machines (ASMs), as of January 1998.Comment: Also maintained as a BibTeX file at http://www.eecs.umich.edu/gasm

    Computers and Liquid State Statistical Mechanics

    Full text link
    The advent of electronic computers has revolutionised the application of statistical mechanics to the liquid state. Computers have permitted, for example, the calculation of the phase diagram of water and ice and the folding of proteins. The behaviour of alkanes adsorbed in zeolites, the formation of liquid crystal phases and the process of nucleation. Computer simulations provide, on one hand, new insights into the physical processes in action, and on the other, quantitative results of greater and greater precision. Insights into physical processes facilitate the reductionist agenda of physics, whilst large scale simulations bring out emergent features that are inherent (although far from obvious) in complex systems consisting of many bodies. It is safe to say that computer simulations are now an indispensable tool for both the theorist and the experimentalist, and in the future their usefulness will only increase. This chapter presents a selective review of some of the incredible advances in condensed matter physics that could only have been achieved with the use of computers.Comment: 22 pages, 2 figures. Chapter for a boo

    A new approach to onset detection: towards an empirical grounding of theoretical and speculative ideologies of musical performance

    Get PDF
    This article assesses aspects of the current state of a project which aims, with the help of computers and computer software, to segment soundfiles of vocal melodies into their component notes, identifying precisely when the onset of each note occurs, and then tracking the pitch trajectory of each note, especially in melodies employing a variety of non-standard temperaments, in which musical intervals smaller than 100 cents are ubiquitous. From there, we may proceed further, to describe many other “micro-features” of each of the notes, but for now our focus is on the onset times and pitch trajectories

    Two Decades of Maude

    Get PDF
    This paper is a tribute to José Meseguer, from the rest of us in the Maude team, reviewing the past, the present, and the future of the language and system with which we have been working for around two decades under his leadership. After reviewing the origins and the language's main features, we present the latest additions to the language and some features currently under development. This paper is not an introduction to Maude, and some familiarity with it and with rewriting logic are indeed assumed.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
    • …
    corecore