86,316 research outputs found

    Passively mode-locked laser using an entirely centred erbium-doped fiber

    Get PDF
    This paper describes the setup and experimental results for an entirely centred erbium-doped fiber laser with passively mode-locked output. The gain medium of the ring laser cavity configuration comprises a 3 m length of two-core optical fiber, wherein an undoped outer core region of 9.38 μm diameter surrounds a 4.00 μm diameter central core region doped with erbium ions at 400 ppm concentration. The generated stable soliton mode-locking output has a central wavelength of 1533 nm and pulses that yield an average output power of 0.33 mW with a pulse energy of 31.8 pJ. The pulse duration is 0.7 ps and the measured output repetition rate of 10.37 MHz corresponds to a 96.4 ns pulse spacing in the pulse train

    Midbrain areas as candidates for audio-vocal interface in echolocating bats

    Get PDF

    Prerequisites for Affective Signal Processing (ASP) - Part III

    Get PDF
    This is the third part in a series on prerequisites for affective signal processing (ASP). So far, six prerequisites were identified: validation (e.g., mapping of constructs on signals), triangulation, a physiology-driven approach, and contributions of the signal processing community (van den Broek et al., 2009) and identification of users and theoretical specification (van den Broek et al., 2010). Here, two additional prerequisites are identified: integration of biosignals, and physical characteristics

    Deduction with XOR Constraints in Security API Modelling

    Get PDF
    We introduce XOR constraints, and show how they enable a theorem prover to reason effectively about security critical subsystems which employ bitwise XOR. Our primary case study is the API of the IBM 4758 hardware security module. We also show how our technique can be applied to standard security protocols

    Dark clouds on the horizon:the challenge of cloud forensics

    Get PDF
    We introduce the challenges to digital forensics introduced by the advent and adoption of technologies, such as encryption, secure networking, secure processors and anonymous routing. All potentially render current approaches to digital forensic investigation unusable. We explain how the Cloud, due to its global distribution and multi-jurisdictional nature, exacerbates these challenges. The latest developments in the computing milieu threaten a complete “evidence blackout” with severe implications for the detection, investigation and prosecution of cybercrime. In this paper, we review the current landscape of cloud-based forensics investigations. We posit a number of potential solutions. Cloud forensic difficulties can only be addressed if we acknowledge its socio-technological nature, and design solutions that address both human and technological dimensions. No firm conclusion is drawn; rather the objective is to present a position paper, which will stimulate debate in the area and move the discipline of digital cloud forensics forward. Thus, the paper concludes with an invitation to further informed debate on this issue

    Rewriting and Well-Definedness within a Proof System

    Full text link
    Term rewriting has a significant presence in various areas, not least in automated theorem proving where it is used as a proof technique. Many theorem provers employ specialised proof tactics for rewriting. This results in an interleaving between deduction and computation (i.e., rewriting) steps. If the logic of reasoning supports partial functions, it is necessary that rewriting copes with potentially ill-defined terms. In this paper, we provide a basis for integrating rewriting with a deductive proof system that deals with well-definedness. The definitions and theorems presented in this paper are the theoretical foundations for an extensible rewriting-based prover that has been implemented for the set theoretical formalism Event-B.Comment: In Proceedings PAR 2010, arXiv:1012.455

    Office Technology

    Get PDF
    corecore