118,898 research outputs found

    Appropriating the Commons A Theoretical Explanation

    Get PDF
    In this paper we show that a simple model of fairness preferences explains major experimental regularities of common pool resource (CPR) experiments. The evidence indicates that in standard CPR games without communication and without sanctioning possibilities inefficient excess appropriation is the rule. However, when communication or informal sanctions are available appropriation behavior is more efficient. Our analysis shows that these regularities arise naturally when a fraction of the subjects exhibits reciprocal preferences.Common pool resources, experiments, fairness, reciprocity, game theory, fairness models

    Different Approaches to Proof Systems

    Get PDF
    The classical approach to proof complexity perceives proof systems as deterministic, uniform, surjective, polynomial-time computable functions that map strings to (propositional) tautologies. This approach has been intensively studied since the late 70’s and a lot of progress has been made. During the last years research was started investigating alternative notions of proof systems. There are interesting results stemming from dropping the uniformity requirement, allowing oracle access, using quantum computations, or employing probabilism. These lead to different notions of proof systems for which we survey recent results in this paper

    Influence of chemical speciation on the separation of metal ions from chelating agents by nanofiltration membranes

    Get PDF
    The simultaneous separation of various metal ions (nickel, copper, calcium, and iron) from chelating agents (EDTA and citric acid in water streams using Nanofiltration membranes is analyzed. Assuming that multiply-charged species are highly rejected, chemical speciation com-10 putations reproduce the observed patterns of metal and ligand rejection at different pH values and concentrations.Postprint (updated version

    Algorithmic Randomness as Foundation of Inductive Reasoning and Artificial Intelligence

    Full text link
    This article is a brief personal account of the past, present, and future of algorithmic randomness, emphasizing its role in inductive inference and artificial intelligence. It is written for a general audience interested in science and philosophy. Intuitively, randomness is a lack of order or predictability. If randomness is the opposite of determinism, then algorithmic randomness is the opposite of computability. Besides many other things, these concepts have been used to quantify Ockham's razor, solve the induction problem, and define intelligence.Comment: 9 LaTeX page

    Probing a non-biaxial behavior of infinitely thin hard platelets

    Full text link
    We give a criterion to test a non-biaxial behavior of infinitely thin hard platelets of D2hD_{2h} symmetry based upon the components of three order parameter tensors. We investigated the nematic behavior of monodisperse infinitely thin rectangular hard platelet systems by using the criterion. Starting with a square platelet system, and we compared it with rectangular platelet systems of various aspect ratios. For each system, we performed equilibration runs by using isobaric Monte Carlo simulations. Each system did not show a biaxial nematic behavior but a uniaxial nematic one, despite of the shape anisotropy of those platelets. The relationship between effective diameters by simulations and theoretical effective diameters of the above systems was also determined.Comment: Submitted to JPS

    Can a computer be "pushed" to perform faster-than-light?

    Full text link
    We propose to "boost" the speed of communication and computation by immersing the computing environment into a medium whose index of refraction is smaller than one, thereby trespassing the speed-of-light barrier.Comment: 7 pages, 1 figure, presented at the UC10 Hypercomputation Workshop "HyperNet 10" at The University of Tokyo on June 22, 201

    Conformational Dynamics and Thermal Cones of C-terminal Tubulin Tails in Neuronal Microtubules

    Get PDF
    In this paper we present a model for estimation of the C-terminal tubulin tail (CTT) dynamics in cytoskeletal microtubules of nerve cells. We show that the screened Coulomb interaction between a target CTT and the negatively charged microtubule surface as well as its immediate CTT neighbours results in confinement of the CTT motion\ud within a restricted volume referred to as a thermal cone. Within the thermal cone the CTT motion is driven by the thermal fluctuations, while outside the thermal cone the CTT interaction energy with its environment is above the thermal energy solely due to repulsion from the negatively charged microtubule surface. Computations were performed for different CTT geometries and we have found that the CTT conformation with lowest energy is perpendicular to the microtubule surface. Since the coupling between a target CTT with its neighbour CTTs is 8 orders of magnitude below the thermal energy and considering the extremely short cytosolic Debye length of 0.79 nm, our results rule out generation\ud and propagation of CTT conformational waves along the protofilament as a result of local CTT perturbations. The results as presented support a model in which the cytosolic electric fields and ionic currents generated by the neuronal excitations are "projected" onto the CTTs of underlying microtubules thus affecting their regulatory function\ud upon kinesin motion and MAP attachment/detachment

    Isochronal annealing effects on local structure, crystalline fraction, and undamaged region size of radiation damage in Ga-stabilized δ\delta-Pu

    Full text link
    The effects on the local structure due to self-irradiation damage of Ga stabilized δ\delta-Pu stored at cryogenic temperatures have been examined using extended x-ray absorption fine structure (EXAFS) experiments. Extensive damage, seen as a loss of local order, was evident after 72 days of storage below 15 K. The effect was observed from both the Pu and Ga sites, although less pronounced around Ga. Isochronal annealing was performed on this sample to study the annealing processes that occur between cryogenic and room temperature storage conditions, where damage is mostly reversed. Damage fractions at various points along the annealing curve have been determined using an amplitude-ratio method, standard EXAFS fitting, and a spherical crystallite model, and provide information complementary to previous electrical resistivity- and susceptibility-based isochronal annealing studies. The use of a spherical crystallite model accounts for the changes in EXAFS spectra using just two parameters, namely, the crystalline fraction and the particle radius. Together, these results are discussed in terms of changes to the local structure around Ga and Pu throughout the annealing process and highlight the unusual role of Ga in the behavior of the lowest temperature anneals.Comment: 13 pages, 10 figure
    • …
    corecore