5,080 research outputs found

    A New Technique for the Design of Multi-Phase Voltage Controlled Oscillators

    Get PDF
    © 2017 World Scientific Publishing Company.In this work, a novel circuit structure for second-harmonic multi-phase voltage controlled oscillator (MVCO) is presented. The proposed MVCO is composed of (Formula presented.) ((Formula presented.) being an integer number and (Formula presented.)2) identical inductor–capacitor ((Formula presented.)) tank VCOs. In theory, this MVCO can provide 2(Formula presented.) different phase sinusoidal signals. A six-phase VCO based on the proposed structure is designed in a TSMC 0.18(Formula presented.)um CMOS process. Simulation results show that at the supply voltage of 0.8(Formula presented.)V, the total power consumption of the six-phase VCO circuit is about 1(Formula presented.)mW, the oscillation frequency is tunable from 2.3(Formula presented.)GHz to 2.5(Formula presented.)GHz when the control voltage varies from 0(Formula presented.)V to 0.8(Formula presented.)V, and the phase noise is lower than (Formula presented.)128(Formula presented.)dBc/Hz at 1(Formula presented.)MHz offset frequency. The proposed MVCO has lower phase noise, lower power consumption and more outputs than other related works in the literature.Peer reviewedFinal Accepted Versio

    On the stability of the Kuramoto model of coupled nonlinear oscillators

    Full text link
    We provide an analysis of the classic Kuramoto model of coupled nonlinear oscillators that goes beyond the existing results for all-to-all networks of identical oscillators. Our work is applicable to oscillator networks of arbitrary interconnection topology with uncertain natural frequencies. Using tools from spectral graph theory and control theory, we prove that for couplings above a critical value, the synchronized state is locally asymptotically stable, resulting in convergence of all phase differences to a constant value, both in the case of identical natural frequencies as well as uncertain ones. We further explain the behavior of the system as the number of oscillators grows to infinity.Comment: 8 Pages. An earlier version appeared in the proceedings of the American Control Conference, Boston, MA, June 200

    Colored noise in oscillators. Phase-amplitude analysis and a method to avoid the Ito-Stratonovich dilemma

    Get PDF
    We investigate the effect of time-correlated noise on the phase fluctuations of nonlinear oscillators. The analysis is based on a methodology that transforms a system subject to colored noise, modeled as an Ornstein-Uhlenbeck process, into an equivalent system subject to white Gaussian noise. A description in terms of phase and amplitude deviation is given for the transformed system. Using stochastic averaging technique, the equations are reduced to a phase model that can be analyzed to characterize phase noise. We find that phase noise is a drift-diffusion process, with a noise-induced frequency shift related to the variance and to the correlation time of colored noise. The proposed approach improves the accuracy of previous phase reduced models

    Noise-tunable nonlinearity in a dispersively coupled diffusion-resonator system using superconducting circuits

    Get PDF
    The harmonic oscillator is one of the most widely used model systems in physics: an indispensable theoretical tool in a variety of fields. It is well known that otherwise linear oscillators can attain novel and nonlinear features through interaction with another dynamical system. We investigate such an interacting system: a superconducting LC-circuit dispersively coupled to a superconducting quantum interference device (SQUID). We find that the SQUID phase behaves as a classical two-level system, whose two states correspond to one linear and one nonlinear regime for the LC-resonator. As a result, the circuit's response to forcing can become multistable. The strength of the nonlinearity is tuned by the level of noise in the system, and increases with decreasing noise. This tunable nonlinearity could potentially find application in the field of sensitive detection, whereas increased understanding of the classical harmonic oscillator is relevant for studies of the quantum-to-classical crossover of Jaynes-Cummings systems.Comment: 8 pages, 8 figure

    Synchrony breakdown and noise-induced oscillation death in ensembles of serially connected spin-torque oscillators

    Full text link
    We consider collective dynamics in the ensemble of serially connected spin-torque oscillators governed by the Landau-Lifshitz-Gilbert-Slonczewski magnetization equation. Proximity to homoclinicity hampers synchronization of spin-torque oscillators: when the synchronous ensemble experiences the homoclinic bifurcation, the Floquet multiplier, responsible for the temporal evolution of small deviations from the ensemble mean, diverges. Depending on the configuration of the contour, sufficiently strong common noise, exemplified by stochastic oscillations of the current through the circuit, may suppress precession of the magnetic field for all oscillators. We derive the explicit expression for the threshold amplitude of noise, enabling this suppression.Comment: 12 pages, 13 figure
    • …
    corecore