99,608 research outputs found

    Improved EMD Using doubly-iterative sifting and high order spline interpolation

    Get PDF
    Empirical mode decomposition (EMD) is a signal analysis method which has received much attention lately due to its application in a number of fields. The main disadvantage of EMD is that it lacks a theoretical analysis and, therefore, our understanding of EMD comes from an intuitive and experimental validation of the method. Recent research on EMD revealed improved criteria for the interpolation points selection. More specifically, it was shown that the performance of EMD can be significantly enhanced if, as interpolation points, instead of the signal extrema, the extrema of the subsignal having the higher instantaneous frequency are used. Even if the extrema of the subsignal with the higher instantaneous frequency are not known in advance, this new interpolation points criterion can be effectively exploited in doubly-iterative sifting schemes leading to improved decomposition performance. In this paper, the possibilities and limitations of the developments above are explored and the new methods are compared with the conventional EMD

    A Gyro Signal Characteristics Analysis Method Based on Empirical Mode Decomposition

    Get PDF
    It is difficult to analyze the nonstationary gyro signal in detail for the Allan variance (AV) analysis method. A novel approach in the time-frequency domain for gyro signal characteristics analysis is proposed based on the empirical mode decomposition and Allan variance (EMDAV). The output signal of gyro is decomposed by empirical mode decomposition (EMD) first, and then the decomposed signal is analyzed by AV algorithm. Consequently, the gyro noise characteristics are demonstrated in the time-frequency domain with a three-dimensional (3D) manner. Practical data of fiber optic gyro (FOG) and MEMS gyro are processed by the AV method and the EMDAV algorithm separately. The results indicate that the details of gyro signal characteristics in different frequency bands can be described with the help of EMDAV, and the analysis dimensions are extended compared with the common AV. The proposed EMDAV, as a complementary tool of the AV, which provides a theoretical reference for the gyro signal preprocessing, is a general approach for the analysis and evaluation of gyro performance

    One or two Frequencies? The empirical Mode Decomposition Answers

    Get PDF
    19 pages, 7 figures. Submitted to IEEE Trans. on Signal Proc.This paper investigates how Empirical Mode Decomposition (EMD), a fully data-driven technique recently introduced for decomposing any oscillatory waveform into zero-mean components, behaves in the case of a composite two-tones signal. Essentially two regimes are shown to exist, depending on whether the amplitude ratio of the tones is greater or smaller than unity, and the corresponding resolution properties of EMD turn out to be in good agreement with intuition and physical interpretation. A refined analysis is provided for quantifying the observed behaviours, theoretical claims are supported by numerical experiments, and possible extensions to nonlinear oscillations are briefly outlined

    Statistical Properties and Applications of Empirical Mode Decomposition

    Get PDF
    Signal analysis is key to extracting information buried in noise. The decomposition of signal is a data analysis tool for determining the underlying physical components of a processed data set. However, conventional signal decomposition approaches such as wavelet analysis, Wagner-Ville, and various short-time Fourier spectrograms are inadequate to process real world signals. Moreover, most of the given techniques require \emph{a prior} knowledge of the processed signal, to select the proper decomposition basis, which makes them improper for a wide range of practical applications. Empirical Mode Decomposition (EMD) is a non-parametric and adaptive basis driver that is capable of breaking-down non-linear, non-stationary signals into an intrinsic and finite components called Intrinsic Mode Functions (IMF). In addition, EMD approximates a dyadic filter that isolates high frequency components, e.g. noise, in higher index IMFs. Despite of being widely used in different applications, EMD is an ad hoc solution. The adaptive performance of EMD comes at the expense of formulating a theoretical base. Therefore, numerical analysis is usually adopted in literature to interpret the behavior. This dissertation involves investigating statistical properties of EMD and utilizing the outcome to enhance the performance of signal de-noising and spectrum sensing systems. The novel contributions can be broadly summarized in three categories: a statistical analysis of the probability distributions of the IMFs and a suggestion of Generalized Gaussian distribution (GGD) as a best fit distribution; a de-noising scheme based on a null-hypothesis of IMFs utilizing the unique filter behavior of EMD; and a novel noise estimation approach that is used to shift semi-blind spectrum sensing techniques into fully-blind ones based on the first IMF. These contributions are justified statistically and analytically and include comparison with other state of art techniques

    Algorithmic options for joint time-frequency analysis in structural dynamics applications

    Get PDF
    The purpose of this paper is to present recent research efforts by the authors supporting the superiority of joint time-frequency analysis over the traditional Fourier transform in the study of non-stationary signals commonly encountered in the fields of earthquake engineering, and structural dynamics. In this respect, three distinct signal processing techniques appropriate for the representation of signals in the time-frequency plane are considered. Namely, the harmonic wavelet transform, the adaptive chirplet decomposition, and the empirical mode decomposition, are utilized to analyze certain seismic accelerograms, and structural response records. Numerical examples associated with the inelastic dynamic response of a seismically-excited 3-story benchmark steel-frame building are included to show how the mean-instantaneous-frequency, as derived by the aforementioned techniques, can be used as an indicator of global structural damage
    corecore