63 research outputs found

    X-Ray microcalorimeter detectors - Technology developments for high energy astrophysics space missions

    Get PDF
    Improvements in the design, fabrication, and performance of astronomical detectors has ushered in the so-called era of multi messenger astrophysics, in which several different signals (electromagnetic waves, gravitational waves, neutrinos, cosmic rays) are processed to obtain detailed descriptions of their sources. Soft x-ray instrumentation has been developed in the last decades and used on board numerous space missions. This has allowed a deep understanding of several physical phenomena taking place in astrophysical sources of different scales from normal stars to galaxy clusters and huge black holes. On the other hand, imaging and spectral capabilities in the the hard x-rays are still lagging behind with high potentials of discovery area. Modern cryogenic microcalorimeters have two orders of magnitude or more better energy resolution with respect to CCD detectors at the same energy in the whole X-ray band. This significant improvement will permit important progress in high energy astrophysics thanks to the data that will be provided by future missions adopting this detector technology such as the ESA L2 mission Athena, the JAXA/NASA mission XRISM, both under development, or the NASA LYNX mission presently under investigation. The JAXA/NASA mission Hitomi, launched in 2016 and failed before starting normal operation, has already given a hint of the high potential of such detectors. Due to their very high sensitivity, X-ray cryogenic microcalorimeters need to be shielded from out of band radiation by the use of efficient thin filters. These microcalorimeters work by measuring the temperature increase caused by a photon that hits an X-ray absorber. In neutron transmutation doped germanium (NTD Ge) devices the temperature increase in the absorber is measured by a semiconductor thermometer made of germanium doped by the neutron transmutation doping technique. They are characterized by relatively low specific heat and low sensitivity to external magnetic fields. These characteristics make them promising detectors for hard X-ray detectors for space and laboratory applications. Research groups of the the X-ray Astronomy Calibration and Testing (XACT) Laboratory of the Osservatorio Astronomico di Palermo – Istituto Nazionale di Astrofisica (INAF-OAPA), and of the Dipartimento di Fisica e Chimica “Emilio Segrè” (DiFC) of the Università di Palermo have already developed experience related to the design, fabrication and testing of NTD Ge microcalorimeters. Furthermore, the research group has participated for many years in the design and development of filters for x-ray detectors in different space missions. This thesis concerns the development of materials and technologies for high energy microcalorimeters. In particular its aim is to design and fabricate thick bismuth absorbers for NTD germanium microcalorimeter arrays to extend their detection band toward hard X-ray energies. Filters for shielding microcalorimeters from different background radiation arriving on the detectors were also studied. The design and fabrication of thick bismuth absorbers for hard x-rays detection (20 keV ≤ E ≤ 100 keV) is part of an ongoing effort to develop arrays of NTD Ge microcalorimeters by planar technologies for astrophysical applications. One potential application of such detectors is in the high spectral resolution (∆E ~ 50 eV) investigation of the hard X-ray emission from the solar corona, which is the goal of a stratospheric balloon borne experiment concept named MIcrocalorimeters STratospheric ExpeRiment for solar hard X rays (MISTERX) presently under study at INAF-OAPA. The characterization activity of filters for microcalorimeters in also related to the implementation of the European Space Agency high energy mission named Athena (Advanced Telescopes for High Energy Astrophysics). This thesis describes the design, fabrication, and characterization of the bismuth absorbers, as well as the characterization of filters for Athena. Chapter one summarizes the working principles of NTD Ge microcalorimeters and their applications. Chapter 2 describes the design of the bismuth absorber array on suitable substrates. Chapter 3 focuses on the electroplating process for the bismuth layer deposition, with details about the design and fabrication of the microlithographic mask for the array patterning, and about the development of the microlithographic process for the array fabrication on the chosen substrates. The fabrication of 4 x 4 absorber arrays is also described. Chapter 4 reports on the characterization activity of deposited bismuth layers by different techniques; their morphology was investigated by scanning electron microscopy. The electrochemical impedance spectroscopy technique was used to increase grown layer quality. Fabricated arrays were also characterized. Chapter 5 describes the characterization activity for different filter prototype samples developed for Athena. Mechanical robustness, radio frequency attenuation and radiation damage caused by protons were evaluated. Radiation damage effects at different doses were in particular investigated on silicon nitride filters by scanning electron microscopy (SEM), atomic force microscopy (AFM), UV-Vis-IR spectroscopy and x-ray attenuation measurements. Details on both technical detector requirements and different sensor types are given in the Appendix

    Science Mission Directorate TechPort Records for 2019 STI-DAA Release

    Get PDF
    The role of the Science Mission Directorate (SMD) is to enable NASA to achieve its science goals in the context of the Nation's science agenda. SMD's strategic decisions regarding future missions and scientific pursuits are guided by Agency goals, input from the science community including the recommendations set forth in the National Research Council (NRC) decadal surveys and a commitment to preserve a balanced program across the major science disciplines. Toward this end, each of the four SMD science divisions -- Heliophysics, Earth Science, Planetary Science, and Astrophysics -- develops fundamental science questions upon which to base future research and mission programs

    Working principle and demonstrator of microwave-multiplexing for the HOLMES experiment microcalorimeters

    Full text link
    The determination of the neutrino mass is an open issue in modern particle physics and astrophysics. The direct mass measurement is the only theory-unrelated experimental tool capable to probe such quantity. The HOLMES experiment aims to measure the end-point energy of the electron capture (EC) decay of 163^{163}Ho with a statistical sensitivity on the neutrino mass as low as 1\sim 1 eV/c2^2. In order to acquire the large needed statistics, by keeping the pile-up contribution as low as possible, 1024 transition edge sensors (TESs) with high energy and time resolutions will be employed. Microcalorimeter and bolometer arrays based on transition edge sensor with thousands of pixels are under development for several space-based and ground-based applications, including astrophysics, nuclear and particle physics, and materials science. The common necessary challenge is to develop pratical multiplexing techniques in order to simplify the cryogenics and readout systems. Despite the various multiplexing variants which are being developed have been successful, new approaches are needed to enable scaling to larger pixel counts and faster sensors, as requested for HOLMES, reducing also the cost and complexity of readout. A very novel technique that meets all of these requirements is based on superconducting microwave resonators coupled to radio-frequency Superconducting Quantum Interference Devices, in which the the changes in the TES input current is tranduced to a change in phase of a microwave signal. In this work we introduce the basics of this technique, the design and development of the first two-channel read out system and its performances with the first TES detectors specifically designed for HOLMES. In the last part we explain how to extend this approach scaling to 1024 pixels.Comment: accepted on JINS

    Isothermal Micro(bio-)calorimetry - Method Optimization and Instrument Development for a Rapid and Reliable Detection of Bacteria

    Get PDF
    Early detection of pathogenic bacteria in food, drinking water and medicine products is one of the essential tasks of routine microbiological analysis. Through analytics, outbreaks can be discovered and consequently, countermeasures can be initiated to minimize health and economic damage. Cultivation of pathogens from contaminated specimens is routinely performed in microbiological laboratories worldwide. The procedure is easy to perform, requires little equipment and provides simple quantitative data in colony-forming units (CFUs) per sample volume. Only the time between preparation and confirmation of a positive (contaminated) sample usually extends over several days. The desired goal should be a technique that can retain the simplicity of cultivation while providing real-time information about the sample under investigation for early detection of potential contamination. Therefore, in the framework of this thesis, systematic heat flow measurements were performed on two model strains, Lactobacillus plantarum DSM 20205 and Pseudomonas putida mt-2 KT2440. The influence of cultivation techniques (in liquid, on solid and membrane filter placed onto solid medium) in static ampoule systems on calorimetric detection was investigated. In particular, the effect of contamination level (initial bacterial cell number), substrate amount (nutrients and oxygen), and detection limits were systematically evaluated. In addition, microcalorimetric measurements of Legionella pneumophila ATCC 33152, a waterborne pathogen, were conducted for the first time. Heat flow profiles demonstrated that high contamination levels (> 1000 CFU) were detected within 24 h. Compared to detection times of up to 10 days by ISO 11731:2017, calorimetric detection can serve as an early warning system. With this knowledge, a uniquely manufactured micro(bio-)calorimetric test system was designed to meet the requirements for detecting bacterial contaminations. In particular, the sample vessel geometry and the operating temperature perfectly matched the microbiological analysis. Within this development work, numerical models were established to investigate the temperature distribution of selected compounds as well as the complete calorimetric system. Based on these models, modifications to the test system were numerically simulated in advance to improve the instrument's performance stepwise. This thesis presents the methodological principles and a calorimetric test system designed as an early warning and detection tool for microbiological samples

    Program Annual Technology Report: Physics of the Cosmos Program Office

    Get PDF
    From ancient times, humans have looked up at the night sky and wondered: Are we alone? How did the universe come to be? How does the universe work? PCOS focuses on that last question. Scientists investigating this broad theme use the universe as their laboratory, investigating its fundamental laws and properties. They test Einsteins General Theory of Relativity to see if our current understanding of space-time is borne out by observations. They examine the behavior of the most extreme environments supermassive black holes, active galactic nuclei, and others and the farthest reaches of the universe, to expand our understanding. With instruments sensitive across the spectrum, from radio, through infrared (IR), visible light, ultraviolet (UV), to X rays and gamma rays, as well as gravitational waves (GWs), they peer across billions of light-years, observing echoes of events that occurred instants after the Big Bang. Last year, the LISA Pathfinder (LPF) mission exceeded expectations in proving the maturity of technologies needed for the Laser Interferometer Space Antenna (LISA) mission, and the Laser Interferometer Gravitational-Wave Observatory (LIGO) recorded the first direct measurements of long-theorized GWs. Another surprising recent discovery is that the universe is expanding at an ever-accelerating rate, the first hint of so-called dark energy, estimated to account for 75% of mass-energy in the universe. Dark matter, so called because we can only observe its effects on regular matter, is thought to account for another20%, leaving only 5% for regular matter and energy. Scientists now also search for special polarization in the cosmic microwave background to support the notion that in the split-second after the Big Bang, the universe inflated faster than the speed of light! The most exciting aspect of this grand enterprise today is the extraordinary rate at which we can harness technologies to enable these key discoveries

    Millimetre-wave power sensor design

    Get PDF
    This study is to maintain and extend the power standards at National Physical Laboratory (NPL) in the United Kingdom. The calibration service of microwave power sensors at high frequencies is endangered because a limited number of traceable waveguide power sensors is available at 50 GHz and above. In this thesis, the technologies of sensing microwave power in waveguides are reviewed, and the bolometric power sensor is investigated further, as its principle is suitable for the traceability requirement at NPL. The conventional design technique of bolometric sensor based on transmission line theory is generalised and two power sensor designs are introduced. The X-band sensor was fabricated, measured at the University of Birmingham and calibrated at NPL. Excellent linearity and high effective efficiency of the design was obtained. The high frequency power sensor designs based on the proposed technique can be scalable to 300 GHz and above, and a W-band sensor is introduced as an example. In order to add more flexibility in selecting frequency and bandwidth, a novel design of microwave power sensor with integrated filter function is described. An analytical power sensor synthesis technique using coupling matrix is presented for the first time. An X-band power sensor with integrated third order Chebyshev filter function was designed and manufactured. Experiential measurements in Birmingham and NPL are in good agreement with simulation and theoretical expectation

    Goddard's Astrophysics Science Divsion Annual Report 2014

    Get PDF
    The Astrophysics Science Division (ASD, Code 660) is one of the world's largest and most diverse astronomical organizations. Space flight missions are conceived, built and launched to observe the entire range of the electromagnetic spectrum, from gamma rays to centimeter waves. In addition, experiments are flown to gather data on high-energy cosmic rays, and plans are being made to detect gravitational radiation from space-borne missions. To enable these missions, we have vigorous programs of instrument and detector development. Division scientists also carry out preparatory theoretical work and subsequent data analysis and modeling. In addition to space flight missions, we have a vibrant suborbital program with numerous sounding rocket and balloon payloads in development or operation. The ASD is organized into five labs: the Astroparticle Physics Lab, the X-ray Astrophysics Lab, the Gravitational Astrophysics Lab, the Observational Cosmology Lab, and the Exoplanets and Stellar Astrophysics Lab. The High Energy Astrophysics Science Archive Research Center (HEASARC) is an Office at the Division level. Approximately 400 scientists and engineers work in ASD. Of these, 80 are civil servant scientists, while the rest are resident university-based scientists, contractors, postdoctoral fellows, graduate students, and administrative staff. We currently operate the Swift Explorer mission and the Fermi Gamma-ray Space Telescope. In addition, we provide data archiving and operational support for the XMM mission (jointly with ESA) and the Suzaku mission (with JAXA). We are also a partner with Caltech on the NuSTAR mission. The Hubble Space Telescope Project is headquartered at Goddard, and ASD provides Project Scientists to oversee operations at the Space Telescope Science Institute. Projects in development include the Neutron Interior Composition Explorer (NICER) mission, an X-ray timing experiment for the International Space Station; the Transiting Exoplanet Sky Survey (TESS) Explorer mission, in collaboration with MIT (Ricker, PI); the Soft X-ray Spectrometer (SXS) for the Astro-H mission in collaboration with JAXA, and the James Webb Space Telescope (JWST). The Wide-Field Infrared Survey Telescope (WFIRST), the highest ranked mission in the 2010 decadal survey, is in a pre-phase A study, and we are supplying study scientists for that mission

    Heats mixing and phase separation of polymer mixtures

    Get PDF
    Imperial Users onl

    Développement d'un biocapteur couplant la résonance des plasmons de surface et la microcalorimétrie pour le suivi des interactions moléculaires à l'interface liquide/solide

    Get PDF
    Dans un avenir proche, les dispositifs de détection médicaux miniaturisés en temps réels (lab-on-chip) seront au centre de la révolution des méthodes de diagnostics médicaux et d identification des processus biologiques et cela, autant au niveau clinique qu au niveau de la recherche. Pour y arriver, il est important de développer des chimies de surface stables et spécifiques, ce qui demande une compréhension des interactions intermoléculaires à l interface liquide/solide. Pour bien comprendre ces interactions, il est important de développer des instruments adaptés à la mesure près de l interface liquide/solide des différentes caractéristiques à identifier. Ce projet de recherche présente la conception, la fabrication et les expériences tests d un capteur multimodal pour l identification de processus biologiques à l interface basés sur des technologies de résonance des plasmons de surface (SPR) et de microcalorimérie. Ces deux technologies mises ensemble vont permettre d effectuer des mesures de la cinétique des interactions ainsi que des caractéristiques thermodynamiques. En premier lieu, les caractéristiques d une interaction intermoléculaire à l interface d une réaction d hybridation d ADN furent définies afin d en déduire un cahier des charges pour les transducteurs. Suite à cela, la conception des transducteurs microcalorimétrique et SPR furent réalisés en tenant compte des contraintes de chacun des transducteurs. Suite à la conception théorique des différentes parties du capteur, un procédé de fabrication compatible avec les méthodes de fabrication standard de la microélectronique fut défini et testé. Afin de s assurer de la fonctionnalité des dispositifs ainsi fabriqués, des tests de fonctionnalisation de surface furent appliqués sur les échantillons afin de tester la compatibilité du procédé de fonctionnalisation avec les méthodes de fabrication et avec une chimie de surface type. Pour terminer, un système de mélange actif fut testé et caractérisé avec le dispositif de microcalorimétrie afin de s assurer qu il était possible de mélanger les fluides avec les produits biologiques pour s assurer de la qualité de la réaction de surface. Le système développé pourra être utilisé pour effectuer la mesure d hybridation d ADN à l interface. Le système intègre deux modalités permettant la caractérisation en temps réel des interactions intermoléculaires à l interface liquide/solide. Ce type de système permet la mesure de la cinétique de différents modèles biologiques tels que les puces à sucre encore certains récepteurs cellulaires ou la mesure de conformation moléculaire à l interface. Des mesures d oxydation du glucose catalysée par la glucose oxydase sont montrées.To begin with, the characteristics of a DNA hybridization intermolecular interaction at the interface were defined in order to deduce the specifications for our transducers. Following this, the SPR and microcalorimetric transducer will be design by taking into account the constraints of each one. Following the theoretical design of the sensor, a manufacturing process compatible with standard methods of microelectronics manufacturing was tested and identified. To ensure the functionality of the devices, a test of surface functionalization on the sensor was applied to test the compatibility of the manufacturing process with the surface functionalization methods. Finally, a system of active mixing was tested and characterized with a microcalorimetric device to ensure it was possible to mix fluids with organic products to be sure of the quality of the surface reaction. The system developed can be used to mesure DNA hybridization at the interface. This system incorporates two modalities for real-time characterization of intermolecular interactions near the solid/liquid interface. This type of system allows the kinetic measurement of different biological models such as cellular receptors or it is possible to have some molecular measure conformation near the interface. Oxidation of glucose with the enzyme glucose oxidase was shown to present the possibility to measure a biological interaction.LYON-Ecole Centrale (690812301) / SudocSudocFranceF
    corecore