610 research outputs found

    HMC-Based Accelerator Design For Compressed Deep Neural Networks

    Get PDF
    Deep Neural Networks (DNNs) offer remarkable performance of classifications and regressions in many high dimensional problems and have been widely utilized in real-word cognitive applications. In DNN applications, high computational cost of DNNs greatly hinder their deployment in resource-constrained applications, real-time systems and edge computing platforms. Moreover, energy consumption and performance cost of moving data between memory hierarchy and computational units are higher than that of the computation itself. To overcome the memory bottleneck, data locality and temporal data reuse are improved in accelerator design. In an attempt to further improve data locality, memory manufacturers have invented 3D-stacked memory where multiple layers of memory arrays are stacked on top of each other. Inherited from the concept of Process-In-Memory (PIM), some 3D-stacked memory architectures also include a logic layer that can integrate general-purpose computational logic directly within main memory to take advantages of high internal bandwidth during computation. In this dissertation, we are going to investigate hardware/software co-design for neural network accelerator. Specifically, we introduce a two-phase filter pruning framework for model compression and an accelerator tailored for efficient DNN execution on HMC, which can dynamically offload the primitives and functions to PIM logic layer through a latency-aware scheduling controller. In our compression framework, we formulate filter pruning process as an optimization problem and propose a filter selection criterion measured by conditional entropy. The key idea of our proposed approach is to establish a quantitative connection between filters and model accuracy. We define the connection as conditional entropy over filters in a convolutional layer, i.e., distribution of entropy conditioned on network loss. Based on the definition, different pruning efficiencies of global and layer-wise pruning strategies are compared, and two-phase pruning method is proposed. The proposed pruning method can achieve a reduction of 88% filters and 46% inference time reduction on VGG16 within 2% accuracy degradation. In this dissertation, we are going to investigate hardware/software co-design for neural network accelerator. Specifically, we introduce a two-phase filter pruning framework for model compres- sion and an accelerator tailored for efficient DNN execution on HMC, which can dynamically offload the primitives and functions to PIM logic layer through a latency-aware scheduling con- troller. In our compression framework, we formulate filter pruning process as an optimization problem and propose a filter selection criterion measured by conditional entropy. The key idea of our proposed approach is to establish a quantitative connection between filters and model accuracy. We define the connection as conditional entropy over filters in a convolutional layer, i.e., distribution of entropy conditioned on network loss. Based on the definition, different pruning efficiencies of global and layer-wise pruning strategies are compared, and two-phase pruning method is proposed. The proposed pruning method can achieve a reduction of 88% filters and 46% inference time reduction on VGG16 within 2% accuracy degradation

    Visual saliency computation for image analysis

    Full text link
    Visual saliency computation is about detecting and understanding salient regions and elements in a visual scene. Algorithms for visual saliency computation can give clues to where people will look in images, what objects are visually prominent in a scene, etc. Such algorithms could be useful in a wide range of applications in computer vision and graphics. In this thesis, we study the following visual saliency computation problems. 1) Eye Fixation Prediction. Eye fixation prediction aims to predict where people look in a visual scene. For this problem, we propose a Boolean Map Saliency (BMS) model which leverages the global surroundedness cue using a Boolean map representation. We draw a theoretic connection between BMS and the Minimum Barrier Distance (MBD) transform to provide insight into our algorithm. Experiment results show that BMS compares favorably with state-of-the-art methods on seven benchmark datasets. 2) Salient Region Detection. Salient region detection entails computing a saliency map that highlights the regions of dominant objects in a scene. We propose a salient region detection method based on the Minimum Barrier Distance (MBD) transform. We present a fast approximate MBD transform algorithm with an error bound analysis. Powered by this fast MBD transform algorithm, our method can run at about 80 FPS and achieve state-of-the-art performance on four benchmark datasets. 3) Salient Object Detection. Salient object detection targets at localizing each salient object instance in an image. We propose a method using a Convolutional Neural Network (CNN) model for proposal generation and a novel subset optimization formulation for bounding box filtering. In experiments, our subset optimization formulation consistently outperforms heuristic bounding box filtering baselines, such as Non-maximum Suppression, and our method substantially outperforms previous methods on three challenging datasets. 4) Salient Object Subitizing. We propose a new visual saliency computation task, called Salient Object Subitizing, which is to predict the existence and the number of salient objects in an image using holistic cues. To this end, we present an image dataset of about 14K everyday images which are annotated using an online crowdsourcing marketplace. We show that an end-to-end trained CNN subitizing model can achieve promising performance without requiring any localization process. A method is proposed to further improve the training of the CNN subitizing model by leveraging synthetic images. 5) Top-down Saliency Detection. Unlike the aforementioned tasks, top-down saliency detection entails generating task-specific saliency maps. We propose a weakly supervised top-down saliency detection approach by modeling the top-down attention of a CNN image classifier. We propose Excitation Backprop and the concept of contrastive attention to generate highly discriminative top-down saliency maps. Our top-down saliency detection method achieves superior performance in weakly supervised localization tasks on challenging datasets. The usefulness of our method is further validated in the text-to-region association task, where our method provides state-of-the-art performance using only weakly labeled web images for training

    Network insensitivity to parameter noise via adversarial regularization

    Full text link
    Neuromorphic neural network processors, in the form of compute-in-memory crossbar arrays of memristors, or in the form of subthreshold analog and mixed-signal ASICs, promise enormous advantages in compute density and energy efficiency for NN-based ML tasks. However, these technologies are prone to computational non-idealities, due to process variation and intrinsic device physics. This degrades the task performance of networks deployed to the processor, by introducing parameter noise into the deployed model. While it is possible to calibrate each device, or train networks individually for each processor, these approaches are expensive and impractical for commercial deployment. Alternative methods are therefore needed to train networks that are inherently robust against parameter variation, as a consequence of network architecture and parameters. We present a new adversarial network optimisation algorithm that attacks network parameters during training, and promotes robust performance during inference in the face of parameter variation. Our approach introduces a regularization term penalising the susceptibility of a network to weight perturbation. We compare against previous approaches for producing parameter insensitivity such as dropout, weight smoothing and introducing parameter noise during training. We show that our approach produces models that are more robust to targeted parameter variation, and equally robust to random parameter variation. Our approach finds minima in flatter locations in the weight-loss landscape compared with other approaches, highlighting that the networks found by our technique are less sensitive to parameter perturbation. Our work provides an approach to deploy neural network architectures to inference devices that suffer from computational non-idealities, with minimal loss of performance. ..

    Service Abstractions for Scalable Deep Learning Inference at the Edge

    Get PDF
    Deep learning driven intelligent edge has already become a reality, where millions of mobile, wearable, and IoT devices analyze real-time data and transform those into actionable insights on-device. Typical approaches for optimizing deep learning inference mostly focus on accelerating the execution of individual inference tasks, without considering the contextual correlation unique to edge environments and the statistical nature of learning-based computation. Specifically, they treat inference workloads as individual black boxes and apply canonical system optimization techniques, developed over the last few decades, to handle them as yet another type of computation-intensive applications. As a result, deep learning inference on edge devices still face the ever increasing challenges of customization to edge device heterogeneity, fuzzy computation redundancy between inference tasks, and end-to-end deployment at scale. In this thesis, we propose the first framework that automates and scales the end-to-end process of deploying efficient deep learning inference from the cloud to heterogeneous edge devices. The framework consists of a series of service abstractions that handle DNN model tailoring, model indexing and query, and computation reuse for runtime inference respectively. Together, these services bridge the gap between deep learning training and inference, eliminate computation redundancy during inference execution, and further lower the barrier for deep learning algorithm and system co-optimization. To build efficient and scalable services, we take a unique algorithmic approach of harnessing the semantic correlation between the learning-based computation. Rather than viewing individual tasks as isolated black boxes, we optimize them collectively in a white box approach, proposing primitives to formulate the semantics of the deep learning workloads, algorithms to assess their hidden correlation (in terms of the input data, the neural network models, and the deployment trials) and merge common processing steps to minimize redundancy

    Application of advanced on-board processing concepts to future satellite communications systems: Bibliography

    Get PDF
    Abstracts are presented of a literature survey of reports concerning the application of signal processing concepts. Approximately 300 references are included
    • …
    corecore