65,284 research outputs found

    Deduction modulo theory

    Get PDF
    This paper is a survey on Deduction modulo theor

    On Automated Lemma Generation for Separation Logic with Inductive Definitions

    Get PDF
    Separation Logic with inductive definitions is a well-known approach for deductive verification of programs that manipulate dynamic data structures. Deciding verification conditions in this context is usually based on user-provided lemmas relating the inductive definitions. We propose a novel approach for generating these lemmas automatically which is based on simple syntactic criteria and deterministic strategies for applying them. Our approach focuses on iterative programs, although it can be applied to recursive programs as well, and specifications that describe not only the shape of the data structures, but also their content or their size. Empirically, we find that our approach is powerful enough to deal with sophisticated benchmarks, e.g., iterative procedures for searching, inserting, or deleting elements in sorted lists, binary search tress, red-black trees, and AVL trees, in a very efficient way

    Strict General Setting for Building Decision Procedures into Theorem Provers

    Get PDF
    The efficient and flexible incorporating of decision procedures into theorem provers is very important for their successful use. There are several approaches for combining and augmenting of decision procedures; some of them support handling uninterpreted functions, congruence closure, lemma invoking etc. In this paper we present a variant of one general setting for building decision procedures into theorem provers (gs framework [18]). That setting is based on macro inference rules motivated by techniques used in different approaches. The general setting enables a simple describing of different combination/augmentation schemes. In this paper, we further develop and extend this setting by an imposed ordering on the macro inference rules. That ordering leads to a ”strict setting”. It makes implementing and using variants of well-known or new schemes within this framework a very easy task even for a non-expert user. Also, this setting enables easy comparison of different combination/augmentation schemes and combination of their ideas

    Extensions to the Estimation Calculus

    Get PDF
    Walther’s estimation calculus was designed to prove the termination of functional programs, and can also be used to solve the similar problem of proving the well-foundedness of induction rules. However, there are certain features of the goal formulae which are more common to the problem of induction rule well-foundedness than the problem of termination, and which the calculus cannot handle. We present a sound extension of the calculus that is capable of dealing with these features. The extension develops Walther’s concept of an argument bounded function in two ways: firstly, so that the function may be bounded below by its argument, and secondly, so that a bound may exist between two arguments of a predicate. Our calculus enables automatic proofs of the well-foundedness of a large class of induction rules not captured by the original calculus

    Tableaux Modulo Theories Using Superdeduction

    Full text link
    We propose a method that allows us to develop tableaux modulo theories using the principles of superdeduction, among which the theory is used to enrich the deduction system with new deduction rules. This method is presented in the framework of the Zenon automated theorem prover, and is applied to the set theory of the B method. This allows us to provide another prover to Atelier B, which can be used to verify B proof rules in particular. We also propose some benchmarks, in which this prover is able to automatically verify a part of the rules coming from the database maintained by Siemens IC-MOL. Finally, we describe another extension of Zenon with superdeduction, which is able to deal with any first order theory, and provide a benchmark coming from the TPTP library, which contains a large set of first order problems.Comment: arXiv admin note: substantial text overlap with arXiv:1501.0117

    Checking Zenon Modulo Proofs in Dedukti

    Get PDF
    Dedukti has been proposed as a universal proof checker. It is a logical framework based on the lambda Pi calculus modulo that is used as a backend to verify proofs coming from theorem provers, especially those implementing some form of rewriting. We present a shallow embedding into Dedukti of proofs produced by Zenon Modulo, an extension of the tableau-based first-order theorem prover Zenon to deduction modulo and typing. Zenon Modulo is applied to the verification of programs in both academic and industrial projects. The purpose of our embedding is to increase the confidence in automatically generated proofs by separating untrusted proof search from trusted proof verification.Comment: In Proceedings PxTP 2015, arXiv:1507.0837
    • 

    corecore