1,786 research outputs found

    Energy-Centric Scheduling for Real-Time Systems

    Get PDF
    Energy consumption is today an important design issue for all kinds of digital systems, and essential for the battery operated ones. An important fraction of this energy is dissipated on the processors running the application software. To reduce this energy consumption, one may, for instance, lower the processor clock frequency and supply voltage. This, however, might lead to a performance degradation of the whole system. In real-time systems, the crucial issue is timing, which is directly dependent on the system speed. Real-time scheduling and energy efficiency are therefore tightly connected issues, being addressed together in this work. Several scheduling approaches for low energy are described in the thesis, most targeting variable speed processor architectures. At task level, a novel speed scheduling algorithm for tasks with probabilistic execution pattern is introduced and compared to an already existing compile-time approach. For task graphs, a list-scheduling based algorithm with an energy-sensitive priority is proposed. For task sets, off-line methods for computing the task maximum required speeds are described, both for rate-monotonic and earliest deadline first scheduling. Also, a run-time speed optimization policy based on slack re-distribution is proposed for rate-monotonic scheduling. Next, an energy-efficient extension of the earliest deadline first priority assignment policy is proposed, aimed at tasks with probabilistic execution time. Finally, scheduling is examined in conjunction with assignment of tasks to processors, as parts of various low energy design flows. For some of the algorithms given in the thesis, energy measurements were carried out on a real hardware platform containing a variable speed processor. The results confirm the validity of the initial assumptions and models used throughout the thesis. These experiments also show the efficiency of the newly introduced scheduling methods

    Schedulability, Response Time Analysis and New Models of P-FRP Systems

    Get PDF
    Functional Reactive Programming (FRP) is a declarative approach for modeling and building reactive systems. FRP has been shown to be an expressive formalism for building applications of computer graphics, computer vision, robotics, etc. Priority-based FRP (P-FRP) is a formalism that allows preemption of executing programs and guarantees real-time response. Since functional programs cannot maintain state and mutable data, changes made by programs that are preempted have to be rolled back. Hence in P-FRP, a higher priority task can preempt the execution of a lower priority task, but the preempted lower priority task will have to restart after the higher priority task has completed execution. This execution paradigm is called Abort-and-Restart (AR). Current real-time research is focused on preemptive of non-preemptive models of execution and several state-of-the-art methods have been developed to analyze the real-time guarantees of these models. Unfortunately, due to its transactional nature where preempted tasks are aborted and have to restart, the execution semantics of P-FRP does not fit into the standard definitions of preemptive or non-preemptive execution, and the research on the standard preemptive and non-preemptive may not applicable for the P-FRP AR model. Out of many research areas that P-FRP may demands, we focus on task scheduling which includes task and system modeling, priority assignment, schedulability analysis, response time analysis, improved P-FRP AR models, algorithms and corresponding software. In this work, we review existing results on P-FRP task scheduling and then present our research contributions: (1) a tighter feasibility test interval regarding the task release offsets as well as a linked list based algorithm and implementation for scheduling simulation; (2) P-FRP with software transactional memory-lazy conflict detection (STM-LCD); (3) a non-work-conserving scheduling model called Deferred Start; (4) a multi-mode P-FRP task model; (5) SimSo-PFRP, the P-FRP extension of SimSo - a SimPy-based, highly extensible and user friendly task generator and task scheduling simulator.Computer Science, Department o

    Analytical characterization of inband and outband D2D Communications for network access

    Get PDF
    Mención Internacional en el título de doctorCooperative short-range communication schemes provide powerful tools to solve interference and resource shortage problems in wireless access networks. With such schemes, a mobile node with excellent cellular connectivity can momentarily accept to relay traffic for its neighbors experiencing poor radio conditions and use Device-to-Device (D2D) communications to accomplish the task. This thesis provides a novel and comprehensive analytical framework that allows evaluating the effects of D2D communications in access networks in terms of spectrum and energy efficiency. The analysis covers the cases in which D2D communications use the same bandwidth of legacy cellular users (in-band D2D) or a different one (out-band D2D) and leverages on the characterization of underlying queueing systems and protocols to capture the complex intertwining of short-range and legacy WiFi and cellular communications. The analysis also unveils how D2D affects the use and scope of other optimization techniques used for, e.g., interference coordination and fairness in resource distribution. Indeed, characterizing the performance of D2D-enabled wireless access networks plays an essential role in the optimization of system operation and, as a consequence, permits to assess the general applicability of D2D solutions. With such characterization, we were able to design several mechanisms that improve system capabilities. Specifically, we propose bandwidth resource management techniques for controlling interference when cellular users and D2D pairs share the same spectrum, we design advanced and energy-aware access selection mechanisms, we show how to adopt D2D communications in conjunction with interference coordination schemes to achieve high and fair throughputs, and we discuss on end-to-end fairness—beyond the use of access network resources—when D2D communications is adopted in C-RAN. The results reported in this thesis show that identifying performance bottlenecks is key to properly control network operation, and, interestingly, bottlenecks may not be represented just by wireless resources when end-to-end fairness is of concern.Programa Oficial de Doctorado en Ingeniería TelemáticaPresidente: Marco Ajmone Marsan.- Secretario: Miquel Payaró Llisterri.- Vocal: Omer Gurewit

    Sculpting Efficiency: Pruning Medical Imaging Models for On-Device Inference

    Full text link
    Applying ML advancements to healthcare can improve patient outcomes. However, the sheer operational complexity of ML models, combined with legacy hardware and multi-modal gigapixel images, poses a severe deployment limitation for real-time, on-device inference. We consider filter pruning as a solution, exploring segmentation models in cardiology and ophthalmology. Our preliminary results show a compression rate of up to 1148x with minimal loss in quality, stressing the need to consider task complexity and architectural details when using off-the-shelf models. At high compression rates, filter-pruned models exhibit faster inference on a CPU than the GPU baseline. We also demonstrate that such models' robustness and generalisability characteristics exceed that of the baseline and weight-pruned counterparts. We uncover intriguing questions and take a step towards realising cost-effective disease diagnosis, monitoring, and preventive solutions

    Assessment of Maize Yield Response to Agricultural Management Strategies Using the DSSAT-CERES-Maize Model in Trans Nzoia County in Kenya

    Get PDF
    Maize production in low-yielding regions is influenced by climate variability, poor soil fertility, suboptimal agronomic practices, and biotic influences, among other limitations. Therefore, the assessment of yields to various management practices is, among others, critical for advancing site-specific measures for production enhancement. In this study, we conducted a multiseason calibration and evaluation of the DSSAT-CERES-Maize model to assess the maize yield response of two common cultivars grown in Trans Nzoia County in Kenya under various agricultural strategies, such as sowing dates, nitrogen fertilization, and water management. We then applied the Mann-Kendall (MK), and Sen's Slope Estimator (SSE) tests to establish the yield trends and magnitudes of the different strategies. The evaluated model simulated long-term yields (1984-2021) and characterized production under various weather regimes. The model performed well in simulating the growth and development of the two cultivars, as indicated by the model evaluation results. The RMSE for yield was 333 and 239 kg ha(-1) for H614 and KH600-23A, respectively, representing a relative error (RRMSE) of 8.1 and 5.1%. The management strategies assessment demonstrated significant feedback on sowing dates, nitrogen fertilization, and cultivars on maize yield. The sowing date conducted in mid-February under fertilization of 100 kg of nitrogen per hectare proved to be the best strategy for enhancing grain yields in the region. Under the optimum sowing dates and fertilization rate, the average yield for cultivar KH600-23A was 7.1% higher than that for H614. The MK and SSE tests revealed a significant (p < 0.05) modest downwards trend in the yield of the H614 cultivar compared to the KH600-23A. The eastern part of Trans Nzoia County demonstrated a consistent downwards trend for the vital yield enhancement strategies. Medium to high nitrogen levels revealed positive yield trends for more extensive coverage of the study area. Based on the results, we recommend the adoption of the KH600-23A cultivar which showed stability in yields under optimum nitrogen levels. Furthermore, we recommend measures that improve soil quality and structure in the western and northern parts, given the negative model response on maize yield in these areas. Knowledge of yield enhancement strategies and their spatial responses is of utmost importance for precision agricultural initiatives and optimization of maize production in Trans Nzoia County

    Missing Data Methods for ICU SOFA Scores in Electronic Health Records Studies: Results from a Monte Carlo Simulation Study

    Get PDF
    This study utilizes electronic health record data from the Medical University of South Carolina’s intensive care units as the basis for this Monte Carlo simulation study— which compares four methods for handling missing SOFA scores, both at the composite and component levels. The four methods examined herein include: complete case analysis, median imputation, zero imputation (the method recommended by the creators of the SOFA score), and multiple imputation. This study found that zero imputation introduced the most bias across all three outcomes studied, and therefore is not recommended. Complete case analysis, or ignoring missing data, caused varying amounts of bias—as did median imputation. Multiple imputation, on the other hand, performed well for all three outcomes studied, both at the composite and component levels, demonstrating this method’s superior value in the presence of missing SOFA scores

    Distributed control of deregulated electrical power networks

    Get PDF
    A prerequisite for reliable operation of electrical power networks is that supply and demand are balanced at all time, as efficient ways for storing large amounts of electrical energy are scarce. Balancing is challenging, however, due to the power system's dimensions and complexity, the low controllability and predictability of demand, and due to strict physical and security limitations, such as finitely fast generator dynamics and finite transmission-line capacities. The need for efficient and secure balancing arrangements is growing stronger with the increasing integration of distributed generation (DG), the ongoing deregulation of production and consumption of electrical energy, and thus, also the provision of many of the ancillary services that are essential for network stability. DG is mostly based on renewable, intermittent sources such as wind and sun, and consequently, it is associated with a much larger uncertainty in supply than conventional, centralized generation. Moreover, with the emergence of deregulated energy markets as core operational mechanism, the prime goal of power system operation is shifted from centralized minimization of costs to the maximization of individual profit by a large number of competing, autonomous market agents. The main objective of this thesis is to investigate the control-technical possibilities for ensuring efficient, reliable and stable operation of deregulated and badly predictable electrical power networks. Its contributions cover aspects of power system operation on a time scale ranging from day-ahead trading of electrical energy to second-based load-frequency control. As a first contribution, we identify the maximization of security of supply and market efficiency as the two main, yet conflicting objectives of power system operation. Special attention is paid to congestion management, which is an aspect of power system operation where the tension between reliability and efficiency is particularly apparent. More specifically, the differences between locational pricing and cost-based congestion redispatch are analyzed, followed by an assessment of their effects on grid operation. Next, we demonstrate that the current synchronous, energy-based market and incentive system does not necessarily motivate producers to exchange power profiles with the electricity grid that contribute to network stability and security of supply. The thesis provides an alternative production scheduling concept as a means to overcome this issue, which relies on standard market arrangements, but settles energy transactions in an asynchronous way. Theoretical analysis and simulation results illustrate that by adopting this method, scheduling efficiency is improved and the strain on balancing reserves can be reduced considerably. A major part of this thesis is dedicated to real-time, i.e., closed-loop, balancing or load-frequency control. With the increasing share of badly predictable DG, there is a growing need for efficient balancing mechanisms that can account for generator and transmission constraints during the operational day. A promising candidate solution is model predictive control (MPC). Because the large dimensions and complexity of electrical power networks hamper a standard, centralized implementation of MPC, we evaluate a number of scalable alternatives, in which the overall control action is computed by a set of local predictive control laws, instead. The extent of inter-controller communication is shown to be positively correlated with prediction accuracy and, thus, attainable closed-loop performance. Iterative, system-wide communication/coordination is usually not feasible for large networks, however, and consequently, Pareto-optimal performance and coupled-constraint handling are currently out of reach. This also hampers the application of standard cost-based stabilization schemes, in which closed-loop stability is attained via monotonic convergence of a single, optimal system-wide performance cost. Motivated by the observations regarding non-centralized MPC, the focus is then shifted to distributed control methods for networks of interconnected dynamical systems, with power systems as particular field of application, that can ensure stability based on local model and state information only. First, we propose a non-centralized, constraint-based stabilization scheme, in which the set of stabilizing control actions is specified via separable convergence conditions for a collection of a-priori synthesized structured max-control Lyapunov functions (max-CLFs). The method is shown to be non-conservative, in the sense that non-monotonic convergence of the structured functions along closed-loop trajectories is allowed, whereas their construction establishes the existence of a control Lyapunov function, and thus, stability, for the full, interconnected dynamics. Then, an alternative method is provided in which also the demand for a monotonically converging full-system CLF is relaxed while retaining the stability certificate. The conditions are embedded in an almost-decentralized Lyapunov-based MPC scheme, in which the local control laws rely on neighbor-to-neighbor communication only. Secondly, a generalized theorem and example system are provided to show that stabilization methods that rely on the off-line synthesis of fixed quadratic storage functions (SFs) fail for even the simplest of linear, time-invariant networks, if they contain one or more subsystems that are not stable under decoupled operation. This may also impede the application of max-CLF control. As key contribution of this thesis, to solve this issue, we endow the storage functions with a finite set of state-dependent parameters. Max-type convergence conditions are employed to construct a Lyapunov function for the full network, whereas monotonic convergence of the individual SFs is not required. The merit of the provided approach is that the storage functions can be constructed during operation, i.e., along a closed-loop trajectory, thus removing the impediment of centralized, off-line LF synthesis associated with fixed-parameter SFs. It is shown that parameterized-SF synthesis conditions can be efficiently exploited to obtain a scalable, trajectory-dependent control scheme that relies on non-iterative neighbor-to-neighbor communication only. For input-affine network dynamics and quadratic storage functions, the procedure can be implemented by solving a single semi-definite program per node and sampling instant, in a receding horizon fashion. Moreover, by interpolating a collection of so-obtained input trajectories, a low-complexity explicit control law for linear, time-invariant systems is obtained that extends the trajectory-specific convergence property to a much stronger guarantee of closed-loop asymptotic stability for a particular set of initial conditions. Finally, we consider the application of max-CLF and parameterized SFs for real-time balancing in multimachine electrical power networks. Given that generators are operated by competitive, profit-driven market agents, the stabilization scheme is extended with the competitive optimization of a set of arbitrarily chosen, local performance cost functions over a finite, receding prediction horizon. The suitability of the distributed Lyapunov-based predictive control and parameterized storage function algorithms is evaluated by simulating them in closed-loop with the 7-machine CIGRÉ benchmark system. The thesis concludes by summarizing the main contributions, followed by ideas for future research

    Secure Multi-Path Selection with Optimal Controller Placement Using Hybrid Software-Defined Networks with Optimization Algorithm

    Get PDF
    The Internet's growth in popularity requires computer networks for both agility and resilience. Recently, unable to satisfy the computer needs for traditional networking systems. Software Defined Networking (SDN) is known as a paradigm shift in the networking industry. Many organizations are used SDN due to their efficiency of transmission. Striking the right balance between SDN and legacy switching capabilities will enable successful network scenarios in architecture networks. Therefore, this object grand scenario for a hybrid network where the external perimeter transport device is replaced with an SDN device in the service provider network. With the moving away from older networks to SDN, hybrid SDN includes both legacy and SDN switches. Existing models of SDN have limitations such as overfitting, local optimal trapping, and poor path selection efficiency. This paper proposed a Deep Kronecker Neural Network (DKNN) to improve its efficiency with a moderate optimization method for multipath selection in SDN. Dynamic resource scheduling is used for the reward function the learning performance is improved by the deep reinforcement learning (DRL) technique. The controller for centralised SDN acts as a network brain in the control plane. Among the most important duties network is selected for the best SDN controller. It is vulnerable to invasions and the controller becomes a network bottleneck. This study presents an intrusion detection system (IDS) based on the SDN model that runs as an application module within the controller. Therefore, this study suggested the feature extraction and classification of contractive auto-encoder with a triple attention-based classifier. Additionally, this study leveraged the best performing SDN controllers on which many other SDN controllers are based on OpenDayLight (ODL) provides an open northbound API and supports multiple southbound protocols. Therefore, one of the main issues in the multi-controller placement problem (CPP) that addresses needed in the setting of SDN specifically when different aspects in interruption, ability, authenticity and load distribution are being considered. Introducing the scenario concept, CPP is formulated as a robust optimization problem that considers changes in network status due to power outages, controller’s capacity, load fluctuations and changes in switches demand. Therefore, to improve network performance, it is planned to improve the optimal amount of controller placements by simulated annealing using different topologies the modified Dragonfly optimization algorithm (MDOA)
    • …
    corecore