118 research outputs found

    Higher Hamming weights for locally recoverable codes on algebraic curves

    Get PDF
    We study the locally recoverable codes on algebraic curves. In the first part of this article, we provide a bound of generalized Hamming weight of these codes. Whereas in the second part, we propose a new family of algebraic geometric LRC codes, that are LRC codes from Norm-Trace curve. Finally, using some properties of Hermitian codes, we improve the bounds of distance proposed in [1] for some Hermitian LRC codes. [1] A. Barg, I. Tamo, and S. Vlladut. Locally recoverable codes on algebraic curves. arXiv preprint arXiv:1501.04904, 2015

    The Weight Hierarchies of Linear Codes from Simplicial Complexes

    Full text link
    The study of the generalized Hamming weight of linear codes is a significant research topic in coding theory as it conveys the structural information of the codes and determines their performance in various applications. However, determining the generalized Hamming weights of linear codes, especially the weight hierarchy, is generally challenging. In this paper, we investigate the generalized Hamming weights of a class of linear code \C over \bF_q, which is constructed from defining sets. These defining sets are either special simplicial complexes or their complements in \bF_q^m. We determine the complete weight hierarchies of these codes by analyzing the maximum or minimum intersection of certain simplicial complexes and all rr-dimensional subspaces of \bF_q^m, where 1\leq r\leq {\rm dim}_{\bF_q}(\C)

    The weight hierarchies and chain condition of a class of codes from varieties over finite fields

    Get PDF
    The generalized Hamming weights of linear codes were first introduced by Wei. These are fundamental parameters related to the minimal overlap structures of the subcodes and very useful in several fields. It was found that the chain condition of a linear code is convenient in studying the generalized Hamming weights of the product codes. In this paper we consider a class of codes defined over some varieties in projective spaces over finite fields, whose generalized Hamming weights can be determined by studying the orbits of subspaces of the projective spaces under the actions of classical groups over finite fields, i.e., the symplectic groups, the unitary groups and orthogonal groups. We give the weight hierarchies and generalized weight spectra of the codes from Hermitian varieties and prove that the codes satisfy the chain condition

    Generalized weights and bounds for error probability over erasure channels

    Full text link
    New upper and lower bounds for the error probability over an erasure channel are provided, making use of Wei's generalized weights, hierarchy and spectra. In many situations the upper and lower bounds coincide and this allows improvement of existing bounds. Results concerning MDS and AMDS codes are deduced from those bounds
    • …
    corecore